Наддув электрический: 403 — Доступ запрещён – миф или все возможно? / Habr

Содержание

Электрокомпрессоры будут экономить до 20% горючего — журнал За рулем

Французская компания Valeo обещает, что ее нагнетатели с электроприводом позволят потреблять моторам на 7–20% меньше топлива. Первым автомобилем с двигателем, оборудованным электронаддувом, станет дизельный Audi SQ7, который выйдет в 2016 году.

compresseur-de-suralimentation-diaporama

Электрокомпрессор Valeo

Первые эксперименты с электрическими компрессорами на двигателях внутреннего сгорания начались чуть больше десяти лет назад. А первый серийный автомобиль с мотором, оснащенным электронаддувом, мы увидим в следующем году — это будет дизельный вседорожник Audi SQ7. Какие выгоды сулит технология? Об этом мы уже рассказывали: элиминация так называемой турбоямы, улучшение динамики и повышение топливной экономичности. В частности, французский поставщик автокомпонентов Valeo обещает экономию горючего на уровне 7–20%!

20150414_audi_sq7_1

Audi SQ7 (тестовый прототип)

Иными словами, в Valeo намекают, что нагнетатели с электроприводом — а не от коленвала или выпускных газов — станут очень привлекательной альтернативой умеренной гибридизации. Для подобных компрессоров хоть и требуются отдельные суперконденсаторы, способные выдавать напряжение 48 В (против 12 вольт в обычных аккумуляторах), но типичный «гибридный набор» — это и дорогие тяговые батареи, и электромоторы, и сложная управляющая электроника, а в некоторых случаях применяются даже оригинальные трансмиссии. В общем, вывод напрашивается.

20150414_20150405_audi_rs5_tdi_concept_2014_1600x1200_wallpaper_2c

Работа электронаддува на примере экспериментального турбодизеля Audi V6 

Мы напоминаем, что электрический компрессор, самое главное, лишен турбозапаздываний — ему не требуется энергия выхлопных газов и до максимальных оборотов он способен раскрутиться за доли секунды (в случае с Audi RS5 TDI Concept — за 0,25 с). Это позволяет добиться не только «атмосферных» откликов на подачу топлива, но и большого тягового усилия практически с холостых — «крутить» мотор с электронаддувом необязательно даже для динамичных ускорений. Наконец, технология дает возможность установить более производительные турбонагнетатели — без оглядки на их инерционность.

Как мы уже отметили, первый автомобиль с двигателем, оборудованным электронаддувом Valeo, появится в следующем году. А в 2017–2019 годах на рынок электронагнетателей выйдет и американская компания Honeywell. Из автопроизводителей помимо Audi технологией уже заинтересовались Volvo и группа Hyundai-Kia.

Электрокомпрессоры позволят экономить до 20% топлива

Французская компания Valeo обещает, что ее нагнетатели с электроприводом позволят потреблять моторам на 7–20% меньше топлива. Первым автомобилем с двигателем, оборудованным электронаддувом, станет дизельный Audi SQ7, который выйдет в 2016 году.

Электрокомпрессоры позволят экономить до 20% топлива

Наддув — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 мая 2015; проверки требуют 12 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 мая 2015; проверки требуют 12 правок. Термин «Наддув» имеет и другие значения.

Наддув — принудительное повышение давления воздуха выше текущего уровня атмосферного в системе впуска двигателя внутреннего сгорания, приводящее к увеличению плотности и массы воздуха в камере сгорания перед тактом рабочего хода, что, согласно правилу стехиометрической горючей смеси для конкретного типа мотора, позволяет сжечь больше топлива, а значит увеличить крутящий момент (и мощность, соответственно) при сравнимой частоте вращения. В широком смысле, повышение удельной/литровой мощности при текущем уровне атмосферного давления и есть основная цель наддува. Буквальным следствием этой технической особенности стало одно из ранних применений наддува для компенсации высотного падения мощности в авиационных маршевых ДВС.

Также, наддув есть любого рода создание повышенного давления в принципе. Существуют понятия наддува кабин высотных и космических летательных аппаратов для создания подходящих для людей условий, наддува баков гидросистем для предотвращения вспенивания рабочей жидкости и т. д.

Возможен агрегатный наддув и безагрегатный наддув.

Лопастная турбина и лопастной центробежный компрессор в составе турбонагнетателя Роторный компрессор Roots, применявшийся на приводных нагнетателях Принципиальная схема работы нагнетателя с электрическим приводом

Под агрегатным подразумевается наддув, создание которого обеспечивается неким агрегатом. Фактически, таковых агрегатов в технике всего три — турбонагнетатель, приводной нагнетатель, нагнетатель с электрическим приводом. Первый работает от энергии выхлопных газов и состоит из газовой турбины и компрессора. Второй работает от непосредственного привода с коленвала двигателя и состоит из механической передачи и компрессора. Третий работает от электропривода и состоит из высокооборотного электромотора и компрессора. Вообще, компрессор входит в состав любого агрегата наддува, вследствие чего, такие термины как турбокомпрессор, приводной компрессор и компрессор с электрическим приводом являются синонимами вышеупомянутым трём и правомерны к использованию. Конструкция компрессора может быть универсальна для любого агрегата, хотя обычно в турбонагнетателе и нагнетателе с электрическим приводом используются лопастные центробежные компрессоры, а в приводном нагнетателе — роторные компрессоры. Сам термин «
агрегатный наддув
» практически никогда не используется, и таковым в речевом обиходе применительно к считается просто любой наддув, если иное не оговорено особо.

Особенность и преимущества агрегатного наддува (турбонаддува, в первую очередь) в том, что таковой позволяет получать сверхвысокие давления на впуске в ДВС — вплоть до 5 Бар — что даёт в итоге примерно кратное давлению наддува повышение удельной мощности на отдельных режимах работы. Всережимного увеличения мощности посредством одного типа агрегата наддува достичь сложно в силу разных причин (либо для этого требуется сильное механическое усложнение конструкции нагнетателя) поэтому часто на ДВС применяются комбинированные системы, состоящие, например, из турбонагнетателя и приводного нагнетателя, или турбонагнетателя и нагнетателя с электрическим приводом.

Также в авиации для компенсации высотного падения мощности маршевых поршневых двигателей на многомоторных самолётах были исторические попытки применения группового агрегатного наддува, обеспечивающего дополнительное снабжение маршевых двигателей воздухом на больших высотах. Основой этой системы был отдельный мотор-компрессор, состоявший из одного двигателя, аналогичного маршевому, и объёмного компрессора, дополненный системой воздуховодов к каждому маршевому двигателю. Пример — тяжёлый бомбардировщик Пе-8.

Агрегатный наддув применяется как на четырёхтактных ДВС, так и на двухтактных ДВС, поршневых и роторно-поршневых, работающих практически по любому термодинамическому циклу (циклу Отто, циклу Дизеля, прочих). Однако к газотурбинным двигателям термин «агрегатного наддува» в русскоязычном инженерно-техническом лексиконе обычно не применяется, несмотря на обязательное наличие компрессора в составе таких двигателей. Важным следствием применения агрегатного наддува является снижение удельного расхода топлива (в граммах на л. с. за час).

К безагрегатному наддуву относят:

  • динамический (ранее называемый инерционным, резонансным, акустическим), при котором эффект достигается за счёт колебательных явлений во впускном и/или выпускном трубопроводах;
  • скоростной, применяемый на поршневых авиационных двигателях на высотах больше расчётной и при скоростях более 500 км/ч;
  • рефрижерационный, достигаемый испарением в поступающем воздухе топлива или какой-либо другой горючей жидкости с низкой температурой кипения и большой теплотой парообразования.

Всё большее распространение[когда?]

на транспортных двигателях внутреннего сгорания получает динамический наддув, который при несущественных изменениях в конструкции трубопроводов приводит к повышению коэффициента наполнения до ηv=0,92−0,96{\displaystyle \eta _{v}=0,92-0,96} в широком диапазоне изменения частоты вращения двигателя. Увеличение ηv{\displaystyle \eta _{v}} при наддуве позволяет форсировать дизель по энергетическим показателям в случае одновременного увеличения цикловой подачи топлива или улучшить экономические показатели при сохранении мощностных (при той же цикловой подаче топлива). Динамический наддув повышает долговечность деталей цилиндро-поршневой группы благодаря более низким тепловым режимам при работе на бедных смесях.

Нагнетатель воздуха

Одной из основных задач, стоявших перед разработчиками с момента рождения ДВС, являлось повышение его мощности. Решение проблемы в лоб – увеличение количества цилиндров – приводит к росту массы и габаритов двигателя, а также вызывает другие сложности. Тем не менее, ещё на самых первых моторах был определен достаточно простой вариант увеличения мощности до пятидесяти процентов, при сохранении всех прочих характеристик силового агрегата. Добиться этого позволяет нагнетатель, обеспечивающий подачу дополнительного количества воздуха в двигатель авто.

Нагнетатель воздуха – зачем он нужен?

Для понимания места и роли нагнетателя воздуха необходимо вспомнить основы работы ДВС. В цилиндры двигателя авто поступает топливно-воздушная смесь (ТВС), сгорание которой и обеспечивает работу мотора. Соотношение между бензином и воздухом поддерживается на определенном уровне и зависит от режимов работы и нагрузки двигателя. Количество ТВС в цилиндре при обычных условиях ограничено его объемом, попадает она туда благодаря создаваемому разрежению на такте впуска, тогда мотор авто всасывает необходимое количество смеси.

центробежный турбо нагнетатель

центробежный турбо нагнетатель

Вот здесь и скрыта тонкость, позволяющая повысить мощность двигателя. Если в него подавать ТВС под давлением, то в тот же самый объем ее поместится гораздо больше, и значит, в процессе сгорания смеси выделится больше энергии и увеличится мощность, которую способен развивать силовой агрегат. Для увеличения объема воздуха, идущего в цилиндры двигателя авто, используется нагнетатель (компрессор). Так называется механизм для сжатия и подачи газа под давлением.

Дополнительным преимуществом может стать экономия топлива, т. к. необходимой мощности можно добиться от мотора меньшего объема.

Нагнетатель воздуха на авто – не все так просто

Однако использовать нагнетатель воздуха прямо в лоб оказалось достаточно затруднительно. Дело в том, что хотя мощность двигателя при этом увеличилась, но это создало ряд новых проблем, которые требовали своего решения для успешного внедрения наддува на авто. Одной из них явилось выделение значительно большего количества тепла при сгорании ТВС, из-за чего прогорали клапана, поршни, выходила из строя система охлаждения.

Другой особенностью стала повышенная вероятность возникновения детонации бензинового двигателя. Когда нагнетатель осуществляет дополнительную подачу воздуха в мотор, то возникающие в них при сжатии повышенные температура и давление могут вызвать детонацию, вследствие чего возможно разрушение двигателя, или как минимум, его преждевременный значительный износ. Избежать этого поможет использование высокооктановых видов топлива или декомпрессия, так по-другому называется уменьшение степени сжатия.

Новые виды горючего дороги, что увеличивает стоимость эксплуатации авто, а декомпрессия приводит к снижению выдаваемой мощности, т.е. теряется эффект от использования наддува воздуха.

Воздушный нагнетатель на авто – каким он бывает

Подачу воздуха в мотор можно осуществить разными вариантами, при которых используется внешний нагнетатель или складывающиеся условия в процессе движения. Исходя из этого, можно определить такие способы наддува:

  • механический, когда на авто устанавливается механический нагнетатель, приводимый в действие от коленвала мотора;
  • турбонаддув, когда предусмотрено использование турбо нагнетателя, приводимого в действие выхлопными газами;
  • электрический, в этом случае в авто применяется электрический нагнетатель воздуха;
  • «Comprex», при этом способе отсутствует приводной нагнетатель, а в цилиндры подача воздуха осуществляется с помощью выхлопных газов;
  • комбинированный, при котором используются несколько различных схем, как правило, совмещают механический нагнетатель и турбонаддув.

Существуют и другие способы, обеспечивающие подачу воздуха в двигатель авто, но выше отмечены наиболее часто применяемые на машинах. На отечественных, кстати, в том числе семейства ВАЗ, подобные устройства серийно не устанавливались.

Механический нагнетатель на карбюраторный авто – варианты построения

Механический нагнетатель был создан одним из первых, почти после появления ДВС. Он связан непосредственно с коленвалом двигателя авто и начинает работать сразу же после его запуска, обеспечивая подачу воздуха пропорционально оборотам мотора. Это является несомненным достоинством, но такой нагнетатель для своей работы отбирает часть мощности двигателя.

Нагнетатель ROOTS

Нагнетатель ROOTS

Существует несколько самых распространенных вариантов построения подобных устройств, наиболее известные из них показаны на фото. Их конструктивные особенности рассмотрены ниже:

  1. Нагнетатель ROOTS. Первоначально это были две обычные шестеренки, вращающиеся в разные стороны, помещенные в замкнутый корпус. С течением времени они видоизменились до того, что представлено на фото. Работает такой нагнетатель достаточно просто – вращающиеся лопатки ротора создают воздушный поток от входа к выходу. Основной недостаток подобных устройств – подача воздуха осуществляется неравномерно, что приводит к пульсации давления. Кроме того, после прохождения устройства возникающая турбулентность воздуха вызывает его нагрев. К достоинствам надо отнести простоту, компактность, и надежность, низкий уровень шума.
  2. Нагнетатель LYSHOLM. Относится к аппаратам винтового типа. Работает подобное устройство аналогичным образом – воздушный поток создается вращающимися роторами. Благодаря малому зазору между ними, обеспечивается требуемое качество наддува. Главным отличием подобного устройства будет сжатие воздуха внутри корпуса. Однако сложности проектирования и изготовления таких изделий вызывают их высокую стоимость, что ограничивает их применение в массовом производстве авто.
  3. Центробежный нагнетатель. Является наиболее распространенным типом и применяется как самостоятельно, в виде компрессора, так и в составе турбо устройств. Вращающиеся лопатки захватывают воздух и отбрасывают его на периферию корпуса. Двигаясь вдоль корпуса, имеющего улиткообразную форму, воздушный поток на выходе приобретает необходимое давление.

 

Нагнетатель LYSHOLM

Нагнетатель LYSHOLM

Для того чтобы центробежный нагнетатель работал эффективно, его крыльчатка должна вращаться с высокой скоростью. Обеспечение такого режима работы связано с трудностями смазки подшипников и создания подобных условий. Однако простота и относительно низкая стоимость самих устройств, сделала их наиболее популярными среди других типов нагнетателей. Особенно часто они используются для тюнинга авто, в том числе и семейства ВАЗ.

Центробежный нагнетатель

Центробежный нагнетатель

Турбо нагнетатель воздуха

Такой подход к обеспечению мотора дополнительным количеством воздуха является наиболее популярным. Применяется он и для дизелей, и для бензиновых моторов. Принцип, на котором работает подобный нагнетатель, понятен из приведенного рисунка:

работа турбо нагнетателя

работа турбо нагнетателя

По сути дела, это комбинация двух устройств – турбины, использующей энергию выхлопных газов, и компрессора. Здесь надо сразу отметить, что режим турбо, применяемый для повышения мощности дизелей, применяется гораздо чаще, чем нагнетание воздуха в бензиновых двигателях. В них повышение давления ограничено появлением детонации, и введение режима турбо требует принятия специальных защитных мер.

Использование энергии отработанных газов связано с целым комплексом проблем, в первую очередь с применяемыми материалами. Лопатки турбины должны выдерживать температуру до тысячи градусов, и при этом скорость их вращения зачастую превышает десять тысяч оборотов в минуту. Однако режим турбо, при котором в дизель поступает дополнительный воздух, облегчает его работу.

Исходя из изложенных особенностей, наилучшим образом наддув турбо будет выполняться при высоких оборотах двигателя, когда турбина сильно раскручена. Другой особенностью такого режима является так называемое запаздывание. В момент резкого нажатия педали, пока сработает наддув в режиме турбо, проходит некоторое время, что и вызывает провал в характеристике.

Чтобы его обойти, применяются специальные технические решения. Одним из возможных вариантов будет применение двух нагнетателей турбо, один из которых работает на малых оборотах, а другой на высоких. Каждый из автопроизводителей по-своему решает эту задачу – кто-то использует мощный нагнетатель, обеспечивающий излишний приток воздуха на всех режимах, и при необходимости сбрасывает его излишки, кто-то применяет несколько маленьких нагнетателей вместо одного большого, кто-то реализует различные комбинации двух первых вариантов.

Если говорить о режиме турбо для бензиновых двигателей, то стоит отметить, что он максимально эффективен на впрысковых двигателях. Карбюраторный мотор может работать в режиме турбо, но ему необходима определенная доработка – установка жиклеров большего сечения, изменение уровня поплавковой камеры и ряд других мер. Тогда как для инжекторного двигателя все сведется к использованию новой прошивки.

Тем не менее, режим турбо зачастую реализуют и на старых машинах, в том числе и семейства ВАЗ, правда, в этом случае чаще всего применяют электрический наддув.

Электрический нагнетатель для двигателя автомобиля

Подобные системы, реализующие режим турбо, относятся к комбинированным. В них чаще всего используется электрический мотор, работающий совместно с центробежным нагнетателем. Достоинством такого подхода, когда привод выполнен как электро, является его универсальность. Он не связан напрямую с работой двигателя, как механический наддув, и электрический мотор можно использовать при любых условиях.

Благодаря такому приводу как электро, можно избежать провала в характеристике нагнетателя. На средних и малых оборотах мотора работает электрический нагнетатель, на высоких включается турбина и реализуется обычный режим турбо. Подобные возможности построения наддува с использованием такого привода как электро, привлекают внимание все более широкого круга автопроизводителей.

нагнетатель воздуха с ременной передачей

нагнетатель воздуха с ременной передачей

Стоит отметить, что нагнетатель электро является привлекательным для выполнения тюнинга авто, в том числе и семейства ВАЗ. На этом рынке есть (отличный от уже описанных) осевой электрический нагнетатель. По оси воздуховода ставится вентилятор (электро). Когда он работает, то усиленный поток воздуха направляется во впускной коллектор. Фактически, таким образом вентилятор (электро) обеспечивает наддув.

К достоинствам, которыми обладает подобный электрический нагнетатель, следует отнести простоту его реализации. Для создания такой системы наддува не требуется никаких технически сложных систем и устройств, обычный бытовой вентилятор (электро) зачастую справится с обеспечением подачи нужного дополнительного количества воздуха в цилиндры мотора.

Использование такой техники позволяет без особых затруднений провести тюнинг старых машин, например таких, как ВАЗ ранних годов выпуска.

Нагнетатель на ВАЗ

В данном случае проблему надо рассматривать несколько шире – речь зачастую идет не конкретно о каком-то автомобиле семейства ВАЗ, а вообще об улучшении атмосферного двигателя. Это достаточно сложная проблема, и она не имеет однозначного решения. Конечно, решаясь улучшить характеристики старого автомобиля, например какой-то модели ВАЗ или Москвича, при использовании штатного двигателя его мощность можно увеличить только с помощью наддува.

Однако это далеко не так просто сделать, как кажется с первого взгляда. Повышение мощности мотора ВАЗ, как и любого другого, должно сопровождаться дополнительными изменениями, обеспечивающими правильное использование подобного усовершенствования. В противном случае измененный двигатель очень быстро выйдет из строя.

нагнетатель на ваз

нагнетатель на ваз
В то же время благодаря тюнингу двигателя, старый ВАЗ или любой другой подобный автомобиль, может получить новую жизнь, тем более что сделать подобные улучшения достаточно просто и не слишком дорого. Гораздо проще грамотно и правильно поставить на ВАЗ нагнетатель воздуха, что обеспечит прирост порядка тридцати процентов мощности двигателя, чем заниматься полной переделкой мотора в поисках тех же самых тридцати процентов мощности.

Но это уже совсем другая тема, в том числе и в отношении старых автомобилей ВАЗ, и хотя она не менее интересна, ее рассмотрение надо проводить самостоятельно.

Использование дополнительного объема воздуха для обеспечения прироста мощности двигателей, в том числе и семейства ВАЗ, довольно известный и давно освоенный автостроителями прием. Он позволяет решить многие вопросы, связанные с получением большей мощности от сравнительно небольших моторов, правда, при соблюдении ряда правил. Но, тем не менее, этот подход достаточно широко применяется разработчиками различных марок авто.

Нагнетатель воздуха – увеличиваем мощность авто своими руками + Видео

На заре автомобилестроения инженеры решали вопрос увеличения мощности двигателей внутреннего сгорания, что называется, в лоб – увеличивали количество и размеры цилиндров. Однако практичность таких разработок даже во времена дешевой нефти была под большим вопросом. Нагнетатель воздуха позволил решить эту проблему своими руками.

1 Турбонагнетатели – с чем столкнулись инженеры?

Сложно это представить, но еще в 1909 году автомобиль с двигателем внутреннего сгорания установил рекорд скорости в 200 км/ч – достижение для тех времен невероятное. Еще сложнее представить объем двигателя, благодаря которому удалось разогнать авто до такой скорости – 28 литров! Даже речи быть не могло, чтобы запустить такие агрегаты в массовое производство, ведь их обслуживание своими руками было практически невозможным, ввиду огромных габаритов двигателя.

К счастью, дальнейшие разработки автомобильных инженеров велись в сторону уменьшения объема при сохранении мощностей, а также упрощения конструкции. Чтобы автомобиль стал массовым, следует дать возможность ремонтировать его своими руками – так размышляли первые автомобилестроители и были совершенно правы.

Благодаря появлению нагнетателя, удалось при сохранении всех параметров сходу увеличить мощность на целых 50 %! Сегодня опытному автомобилисту не составит труда своими руками установить одну из популярных систем турборежима.

Представить принцип работы такого устройства совершенно не сложно даже школьнику младших классов. Работу мотора обеспечивает постоянное сгорание топливно-воздушной смеси, которая поступает в цилиндры двигателя. В зависимости от возможностей двигателя и режимов его работы устанавливается оптимальное соотношение воздуха и топлива. В обычных условиях объем ТВС ограничен размерами цилиндра – внутрь камеры смесь попадает благодаря разрежению на такте впуска.

Нагнетатель воздуха позволяет подать внутрь цилиндра на впуске больше топливно-воздушной смеси. Больше ТВС – больше энергии при сгорании, больше мощность агрегата. Казалось бы, все просто, как дважды два, однако без нюансов не обошлось. Увеличение мощности двигателя таким способом повлекло целый ряд проблем. Главная из них – возрастание количества тепловой энергии при сгорании смеси, что в свою очередь влечет быстрое прогорание поршней, клапанов, поломку системы охлаждения. И далеко не всегда последствия удается ликвидировать своими руками.

Кроме того, с увеличением объема ТВС увеличивается и шанс детонации двигателя в буквальном смысле этого слова. Даже без детонации преждевременный износ агрегата гарантирован. Чтобы уменьшить негативные последствия для автомобиля (избежать их полностью не удается), принято использовать высокооктановое топливо, а также декомпрессию. В первом случае приходится своими руками платить немалые деньги, а во втором существенно снижается мощность.

2 Нагнетатель воздуха – как влить силы в двигатель?

С развитием автомобилестроения возникали и различные способы компрессии воздуха. Многие разработки уверенно дошли и до наших дней. Итак, разберемся, какие способы наддува существуют:

  1. Механический – «отец» нагнетателей, возникший практически сразу же после появления ДВЗ. В действие такой наддув приводится коленвалом мотора.
  2. Электрический – более современный вариант турбонаддува, в котором излишнее давление в цилиндрах создает электрический компрессор.
  3. Турбонаддув – нагнетатель в такой системе работает от давления выхлопных газов и компрессора.
  4. Комбинированный наддув – совмещение различных систем, чаще всего механической и турбо.


Как правило, такие системы серийно на автомобили не устанавливаются, что дает автолюбителям множество возможностей для тюнинга своими руками.

3 Механический турбонагнетатель воздуха – своими руками совершенствуем авто!

Наиболее эффективен режим турбо на впрысковых бензиновых двигателях. Моторы карбюраторного типа также могут работать с механическим нагнетателем, однако им необходима определенная доработка своими руками, в частности, установка жиклеров с увеличенным сечением и другие меры. В случае с инжекторным двигателем все сводится к новой прошивке.

Механический нагнетатель, работающий от коленвала двигателя, имеет несомненное достоинство – он работает абсолютно синхронно с агрегатом и в режиме турбо обеспечивает равномерную подачу воздуха в соответствии с оборотами мотора. Однако такое устройство будет отбирать для своей работы часть мощности движка.

Самыми распространенными вариантами построения механических нагнетателей, которые можно установить своими руками, являются три типа:

  • Центробежный аппарат – применяется как самостоятельно в виде компрессора, так и в комбинации с другими устройствами. Принцип работы достаточно прост – лопатки, вращающиеся на большой скорости, захватывают воздух и забрасывают внутрь корпуса, который имеет улиткообразную форму. На выходе из корпуса поток воздуха приобретает нужное для режима турбо давление. Невысокая стоимость устройства и возможность установки своими руками сделали его наиболее популярным. Однако в его работе хватает и сложностей, в частности, с техобслуживанием.
  • Нагнетатель ROOTS – представляет собой лопатки ротора, которые помещены в замкнутый корпус. Воздух захватывается на входе, за счет высокой скорости вращения лопаток воздух приобретает более высокое давление на выходе. Главный недостаток устройства такого типа – неравномерность подачи воздушного потока, что вызывает пульсацию давления в режиме турбо. Однако относительно тихая работа, надежность и компактность заставляют автомобилистов мириться даже с таким недостатком. При определенных навыках обращения с техникой вам не составит труда установить такой наддув своими руками.
  • Нагнетатель LYSHOLM – представитель винтового типа аппаратов. Принцип работы схож с предыдущим – поток воздуха создается роторами, которые вращаются на высокой скорости. Главное отличие этого типа нагнетателей – маленький зазор между винтами, что вызывает множество сложностей в проектировании и установке таких изделий. Встречаются они на автомобилях нечасто и стоят недешево. Устанавливать их своими руками не рекомендуется, лучше обращаться к специалистам по турбонаддуву.

4 Турбонагнетатель – универсальный наддув своими руками

Как для бензиновых, так и для дизельных двигателей возможно применение турбонагнетателя. Это устройство представляет собой комбинацию компрессора и турбины, которая использует давление выхлопных газов для работы. Последнее устройство создает ряд проблем – турбина должна выдерживать высокие температуры и огромную скорость вращения, а значит, материалы для ее изготовления должны быть сверхпрочными. Некоторую часть нагрузки с турбины снимает компрессор, что и позволяет комплексу в целом справляться со своей задачей.

Недостаток устройства заключается в некотором запаздывании режима турбо – необходимо время, чтобы после нажатия на педаль турбина раскрутилась до нужного количества оборотов.

Впрочем, современные агрегаты решают и эту проблему, в основном благодаря наличию дополнительных нагнетателей. В отличие от турбонагнетателя, никакого запаздывания после нажатия на педаль в случае с электрическим компрессором вы не почувствуете – устройство, которое чаще всего комбинируют с центробежной турбиной, начинает работать уже на малых и средних оборотах, а турбина подключается на высоких. Электрический нагнетатель воздуха достаточно прост в реализации – никаких сложных систем и устройств для его установки не потребуется, так что усовершенствовать авто своими руками с его помощью вполне осуществимо.

Электрический турбонагнетатель, за ним будущее?

Электрический турбонагнетатель и принципы его работы.

Электрический турбонагнетатель, за ним будущее?

Чтобы сделать автомашины как можно более производительными, многие автокомпании прибегают к турбированию двигателей автомобилей и делается это уже многие десятки лет. Лучшего способа, чтоб снять с одного и того же объема двигателя наиболее большую мощность, в мире пока что еще не придумали. Но вот переосмыслить всю суть данной работы турбины в компании «Audi» уже пытаются. По всей видимости и благодаря трудам инженеров Ингольштадта, очень скоро мы с вами сможем увидеть совсем иной вид турбокомпрессоров, которые могут изменить всю игру на мировом автомобильном рынке.

 

“Уменьшение объёмов двигателей является одним из ключевых решений, которое используется автопроизводителями для снижения потребления топлива автотранспортным средством”, — так поясняет сотрудник поставщика автокомплектующих Valeo в своем заявлении. Однако, для поддержания высокой производительности у уменьшающихся в своем объеме двигателей автопроизводители обычно используют в машинах турбонагнетатели, разгоняемые исходящими выхлопными газами, которые проходят через выхлопной коллектор машин. Все было бы ничего, если бы не один неприятный момент. В результате использования данной схемы привода турбины в автомобиле происходит задержка отклика нагнетаемого давления, известного многим, как турболаг (турбо яма).

Электрический турбонагнетатель, за ним будущее?

 

Смотрите также: Новая Ауди S4 замечена на тестах в Нюрбургринге

 

Эта замедленная реакция преследует многих автовладельцев турбированных машин в течение уже многих лет и является очень частой жалобой к производителям. Попытки сделать улучшенную схему турбонаддува ни как не приводят к идеальному результату. Такие например доработки, как турбокомпрессоры с двойной улиткой или специальные небольшие турбокомпрессоры, что используются в качестве средства борьбы с турбо-ямой, делают ситуацию немного лучше, но все-равно до нужного идеала им еще далеко. Проще говоря можно сказать так, что очень пока трудно сделать двигатель с турбонаддувом, который непосредственно будет работать от выхлопных газов и будет обеспечивать немедленный отклик.

 

Заряжаем турбину

Электрический турбонагнетатель, за ним будущее?

Инженеры-разработчики вновь углубились в различные проектирования и эксперименты. И как-то неожиданно для себя однажды обнаружили следующую вещь (закономерность). При развитии электрических технологий в автопроизводстве и с изучением всех плюсов и минусов электрических силовых агрегатов, что используются в автомобильной индустрии, было подмечено следующее, что у автомобилей с электродвигателями, ответ на нажатие на педаль газа происходит почти мгновенно, без каких-либо задержек. И это показалось для инженеров самой разумной отправной точкой, чтобы применить данную положительную черту в использовании электрических компонентов при создании конкретной идеальной турбины. Электромобили стоят пока что дорого, и это из-за размеров самих моторов, аккумуляторов, а еще они не совсем практичны в связи с ограниченной дистанцией пробега на которую этот электромобиль может уехать на одной подзарядке.

 

Смотрите также: Экономия топлива в жаркую погоду

 

Но зачем же тогда надо использовать крупные узлы электромобилей, когда можно взять идею и применить ее в совсем другом формате к обычному для нас двигателю ДВС? Ведь автопроизводители могут использовать для этого совсем небольшие электрические двигатели и их компоненты. Одним из таких средств, что позволил увеличить мощность двигателя не полагаясь на выхлопные газы, стал электротурбонаддув.

 

“Электродвигатель может среагировать мгновенно (в течение 250 миллисекунд)”, — так говорят в Valeo. Такой отклик электродвигателя может сократить потребление топлива на 10% с использованием данной и необходимой настройки. По сути говоря, так как новый вид компрессоров не приводится в движение выхлопными газами, то технически он является простым нагнетателем, которые для простоты также еще называют электрическими турбонагнетателями.

 

Компания (концерн) «Фольксваген» и связанные с ним автобренды вкладывают значительные средства в эти новые электрические турботехнологии.

 

“Концерн «Volkswagen» работает над созданием электрического турбонагнетателя для использования его с различными автобрендами в глобальном масштабе,”- сказал Марк Джилес, представитель «VW USA». “Основным преимуществом данного нагнетателя является время отклика и то, что он подает импульс от холостого хода в сравнении с выхлопными зарядными устройствами, которые требуют для себя по меньшей мере 1500 об/мин для подачи дополнительного давления”.

 

«Ауди» демонстрирует свою Е-Турбо

Электрический турбонагнетатель, за ним будущее?

Компания «Ауди» продемонстрировала недавно свои новейшие разработки в мире электрической турбины на своем автомобиле Clubsport TT Turbo Concept, т.е. на полноприводном автомобиле, который выдает 600 л. с. и 648 Нм максимально крутящего момента, и все это благодаря паре турбонагнетателей стоящих на его 2,5-литровом пятицилиндровом двигателе. Одна из турбин, а именно традиционного типа, управляется выхлопными газами, а вторая является уже электрическим агрегатом.

 

Компания «Ауди» создала данный концепткар для того, чтобы показать возможности работы этих электрических турбонагнетателей, сказав и показав всему автомиру, что такая технология почти что готова к запуску на всех серийных автомобилях. В багажнике в автоомобиле размещена вторая 48-вольтная электрическая система, которая как-раз и питает этот электрический компрессор, увеличивая тем самым давление самого двигателя по запросу электрических датчиков, и это вместо долгого ожидания того самого момента, когда до простой обычной турбины дойдет волна выхлопных газов и раскрутит лопасти самой турбины. Все эти технологии безусловно улучшают само поведение автомобиля, который может теперь достигнуть скорости в 100 км/ч всего за 3,6 секунды.

 

“Компрессор с электрическим приводом обеспечивает значительные преимущества,”- сказал Брэд Штретц, сотрудник подразделения «Audi» в США. “Он набирает обороты до максимальных значений очень быстро и без каких-либо ощутимых задержек, и все это начинается еще до начала работы стандартного турбонагнетателя и при слишком маленьком давлении выхлопных газов”- продолжил Брэд Штретц.

 

Смотрите также: Электрический привод автомобиля- против традиционного

 

“Такой принцип работы нагнетателя делает возможным установку обычного турбонагнетателя для конкретного создания высокого заряда давления и, следовательно, для достаточно высокой мощности двигателя,– ну а модель Е-турбо гарантирует быстроту отклика и мощные спринты с самых низких оборотов двигателя на всем своем диапазоне”, — еще добавил Брэд Штретц.

 

Это не первый уже раз компания «Ауди» показывает свой опыт в экспериментах с электрическими турбинами. В прошлом году этот Немецкий автопроизводитель добавил авто-модели E-Turbo свой твинтурбовый 3.0-литровый дизельный двигатель V6 и поставил тем самым все это под капот модели RS5. В результате этого получилось достаточно стремительное и быстрое авто-купе, которые могло достигнуть скорости в 100 км/ч примерно за 4 секунды, и это при расходе топлива каких-то 5 л / на 100 км. Все это сделало автомобиль намного быстрее, чем ее обычный собрат модель RS5 и, он стал более чем в два раза экономичнее по своему расходу топлива.

 

Когда могут появиться электрические турбонагнетатели.

Электрический турбонагнетатель, за ним будущее?

Все исследования подошли к своему завершающему аккорду, дело осталось по всей видимости, за малым, а именно, взять и запустить первую модель в производство. Скорее всего компания «Audi» станет пионером в применении данной технологии в автомобиле. Но на какую из моделей и в каком году она поставит свой «дикий коктейль из улиток» пока не известно. Будем ждать.

Системы наддува двигателя

С момента появления двигателя внутреннего сгорания перед конструкторами появилась задача повышения его мощности. А это возможно только одним путем – увеличением количества сгораемого топлива.

Способы повышения мощности двигателя

Для решения этой проблемы использовалось два метода, один из которых – повышение объема камер сгорания. Но в условиях постоянно ужесточающийся экологических требований к силовым агрегатам автомобилей этот метод повышения мощности сейчас практически не используется, хотя раннее он был приоритетным.

Второй метод повышения мощности сводится к принудительному увеличению количества горючей смеси. В результате этого даже на малообъемных силовых установках удается существенно повысить эксплуатационные показатели.

Если с увеличением количества подаваемого в цилиндры топлива проблем не возникает (система его подачи легко регулируется под требуемые условия), то с воздухом не все так просто. Силовая установка самостоятельно его закачивает за счет разрежения в цилиндрах и повлиять на объем закачки невозможно. А поскольку для максимально эффективного сгорания в цилиндрах должна создаваться топливовоздушная смесь с определенным соотношением, то увеличение только одного количества топлива никакого прироста мощности не дает, а наоборот – повышается расход, а мощность падает.


Выходом из ситуации является принудительная накачка воздуха в цилиндры, так называемый наддув двигателя. Отметим, что первые устройства, нагнетающие воздух в камеры сгорания, появились практически с момента появления самого двигателя внутреннего сгорания, но долгое время их на автотранспорте не использовали. Зато наддувы достаточно широко использовались в авиации и на кораблях.

Виды по способу создания давления

Наддув двигателя – задумка теоретически простая. Суть ее сводится к тому, что принудительная закачка позволяет существенно увеличить количество воздуха в цилиндрах по сравнению с объемом, который засасывает сам мотор, соответственно, и топлива подать можно больше. В результате удается повысить мощность силовой установки без изменения объема камер сгорания

Но это в теории все просто, на практике же возникает множество трудностей. Основная проблема сводится к определению, какая конструкция наддува является самой эффективной и надежной.

В целом разработано три типа нагнетателей, различающихся по способу нагнетания воздуха:

  1. Roots
  2. Lysholm (механический нагнетатель)
  3. Центробежный (турбина)

Каждый из них имеет свои конструктивные особенности, достоинства и недостатки.

Roots

Нагнетатель типа Roots изначально был представлен в виде обычного шестеренчатого насоса (что-то схожее с масляным насосом), но со временем конструкция этого наддува сильно изменилась. В современном нагнетателе Roots шестеренки заменены на два ротора, вращающихся разнонаправлено, и установленных в корпусе. Вместо зубьев на роторах сделаны лопастные кулачки, которыми происходит зацепление роторов между собой.

Главной особенностью наддува Roots является способ нагнетания. Давление воздуха создается не в корпусе, а на выходе из него. По сути, лопасти роторов просто захватывают воздух и выталкивают его в выходной канал, ведущий к впускному коллектору.

Устройство и работа нагнетателя Roots

Но у такого нагнетателя есть несколько существенных недостатков – создаваемое им давление ограничено, при этом еще присутствует пульсация воздуха. Но если второй недостаток конструкторы смогли преодолеть (путем придания роторам и выходным каналам особой формы), то проблема ограничения создаваемого давления более серьезна – либо приходится увеличивать скорость вращения роторов, что негативно сказывается на ресурсе нагнетателя, либо создавать несколько ступеней нагнетания, из-за чего устройство становится очень сложным по конструкции.

Lysholm

Наддув двигателя типа Lysholm конструктивно схож с Roots, но у него вместо роторов используются спиралевидные шнеки (как в мясорубке). В такой конструкции создание давления происходит уже в самом нагнетателе, а не на выходе. Суть проста – воздух захватывается шнеками, сжимается в процессе транспортировки шнеками от входного канала на выходной и затем выталкивается. За счет спиралевидной формы процесс подачи воздуха идет непрерывно, поэтому никакой пульсации нет. Такой нагнетатель обеспечивает создание большего давления, чем конструкция Roots, работает бесшумно и на всех режимах мотора.

Нагнетатель типа Lysholm, другое название — винтовой.

Основным недостатком этого наддува является высокая стоимость изготовления.

Центробежный тип

Центробежные нагнетатели – самый сейчас распространенный тип устройства. Он конструктивно проще, чем первые два типа, поскольку рабочий элемент у него один – компрессионное колесо (обычная крыльчатка). Установленная в корпусе эта крыльчатка захватывает воздух входного канала и выталкивает его в выходной.

Центробежный нагнетатель с газотурбинным приводом

Особенность работы этого нагнетателя сводится к тому, что для создания требуемого давления необходимо, чтобы турбинное колесо вращалось с очень большой скоростью. А это в свою очередь сказывается на ресурсе.

Типы привода, их достоинства и недостатки

Вторая проблема – привод нагнетателя, а он может быть:

  1. Механическим
  2. Газотурбинным
  3. Электрическим

В механическом приводе в действие нагнетатель приводится от коленчатого вала посредством ременной, реже – цепной, передачи. Такой тип привода хорош тем, что наддув начинает работать сразу после запуска силовой установки.

Но у него есть существенный недостаток – этот тип привода «забирает» часть мощности мотора. В результате получается замкнутый круг – нагнетатель повышает мощность, но сразу же ее и отбирает. Использоваться механический привод может со всеми типами наддувов.

Газотурбинный привод сейчас пока является самым оптимальным. В нем нагнетатель приводится в действие за счет энергии сгоревших газов. Этот тип привода используется только с центробежным наддувом. Нагнетатель с таким типом привода получил название турбонаддува.

Чтобы использовать энергию отработанных газов конструкторы, по сути, просто взяли два центробежных нагнетателя и соединили их крыльчатки одной осью. Далее один нагнетатель подсоединили к выпускному коллектору. Выхлопные газы, на выходе из цилиндров двигаются с высокой скоростью, попадают в нагнетатель и раскручивают крыльчатку (она получила название турбинное колесо). А поскольку она соединена с крыльчаткой (компрессорным колесом) второго нагнетателя, то он начинает выполнять требуемую задачу – нагнетать воздух.

Турбонаддув хорош тем, что не оказывает влияние на мощность двигателя. Но у него есть недостаток, причем существенный – на малых оборотах двигателя он из-за небольшого количества выхлопных газов не способен эффективно нагнетать воздух, он эффективен только на высоких оборотах. К тому же в турбонаддуве присутствует такой эффект как «турбояма».

Суть этого эффекта сводится к тому, что турбонаддув не обеспечивает мгновенную реакцию на действия водителя. При резком изменении режима работы двигателя, к примеру, при разгоне, на первом этапе энергии выхлопных газов недостаточно, чтобы наддув закачал требуемое количество воздуха, нужно время, чтобы в цилиндрах прошли процессы и повысилось количество отработанных газов. В результате при резком нажатии на педаль, машина «тупит» и не разгоняется, но как только наддув наберет обороты, авто начинает активно ускоряться – «выстреливает».

Есть и еще один не очень приятный эффект – «турболаг». У него суть примерно та же, что и у «турбоямы», но природа у него несколько другая. Сводится она к тому, что наддув обладает запоздалой реакцией на действия водителя. Обусловлена она тем, что нагнетателю требуется время захватить, закачать воздух и подать его в цилиндры.

Показательные графики эффектов «турбояма» и «турболаг» в зависимости от мощности

«Турбояма» появляется только в нагнетателях, работающих от энергии выхлопных газов, в устройствах же с механических приводом ее нет, поскольку производительность наддува пропорциональна оборотам двигателя. А вот «турболаг» присутствует во всех типах нагнетателей.

В современных автомобилях начинают внедрять электрические приводы наддува, но они только зарождаются. Пока их используют, как дополнительный механизм, для исключения «турбоямы» в работе турбонаддува. Не исключено что вскоре и появится разработка которая заменит привычные нам нагнетатели.

Электронагнетатель от фирмы Valeo

Для их эффективной работы необходимо более высокое напряжение, поэтому используется вторая сеть со своим аккумулятором на 48 вольт. Концерн Audi вообще планирует перевести все оборудование на повышенное напряжение – 48 вольт, так как увеличивается количество электронных систем и соответственно нагрузка на сеть автомобиля. Возможно в будущем все автопроизводители перейдут на повышенное напряжение бортовой сети.

Иные проблемы

Помимо способа нагнетания и типа привода существует еще немало вопросов, которые успешно решились или решаются конструкторами.

К ним относится:

  • нагрев воздуха при сжатии;
  • «турбояма»;
  • эффективная работа нагнетателя на всех режимах.

Во время нагнетания воздух сильно нагревается, что приводит к снижению его плотности, а это в свою очередь сказывается на детонационном пороге топливовоздушной смеси. Устранить эту проблему удалось путем установки интеркулера – радиатора охлаждения воздуха. Причем осуществлять охлаждение этот узел может разными способами – потоком встречного воздуха или за счет жидкостной системы охлаждения.

Варианты исполнения систем наддува

Но установка интеркулера породила другую проблему – увеличение «турболага». Из-за радиатора общая длина воздуховода от нагнетателя к впускному коллектору существенно увеличилась, а это повлияло на время нагнетания.

Проблема с «турбоямой» автопроизводителями решается по-разному. Одни снижают массу составных элементов, другие используют технологию изменяемой геометрии турбопривода. При первом варианте решения проблемы, снижение массы крыльчаток приводит к тому, что для раскручивания наддува требуется меньше энергии. Это позволяет нагнетателю раньше вступить в работу и обеспечить давление воздуха даже при незначительных оборотах двигателя.

Что касается геометрии, то за счет использования специальных крыльчаток с приводом от актуатора, установленных в корпусе турбинного колеса удается осуществлять перенаправление потока отработанных газов в зависимости от режима работы мотора.

Повышение эффективности работы нагнетателя на всех режимах работы некоторые производители решают путем установки двух, а то и трех нагнетателей. И здесь уже каждая автокомпания поступает по-разному. Одни устанавливают два турбонаддува, но разных размеров. «Малый» нагнетатель отрабатывает на небольших оборотах мотора, снижая эффект «турбоямы», а при увеличении оборотов в работу включается «большой» наддув. Другие же автопроизводители применяют комбинированную схему, в которой за малые обороты «отвечает» нагнетатель с механическим приводом, что вовсе устраняет «турбояму», а на высоких оборотах задействуется уже турбонаддув.

Напоследок отметим, что выше указаны только одни из основных проблем, связанных с принудительной подачей воздуха в цилиндры, в действительности их больше. К ним можно отнести передув и помпаж.

Увеличение мощности нагнетателем, по сути, ограничено только одним фактором — прочнотью составных элементов силовой установки. То есть, мощностные характеристики можно увеличивать только до определенного уровня, превышение которого приведет к разрушению узлов мотора. Это превышение и называется передувом. Чтобы он не произошел, система принудительного нагнетания воздуха оснащается клапанами и каналами, которые предотвращают раскручивание крыльчатки выше установленных оборотов, получается, что производительность наддува имеет граничную отметку. Дополнительно при достижении определенных условий ЭБУ системы питания корректирует количество подаваемого в цилиндры топлива.

Помпаж можно охарактеризовать как «обратное движение воздуха». Возникает эффект при резком переходе с высоких оборотов на низкие. В итоге, нагненататель уже накачал воздух в большом количестве, но из-за снижения оборотов он становиться невостребованным, поэтому он начинает возвращаться к наддуву, что может стать причиной его поломки.

Клапан blow-off

Проблема помпажа решена использованием обходных каналов (байпас), по которым сжатый не расходованный воздух перекачивается на входной канал перед нагнетателем, тем самым он смягчает, но не устраняет, нагрузки при помпаже. Второй системой которая полностью решает проблему помпажа, является установка перепускного клапана или blow-off, который при необходимости сбрасывает воздух в атмосферу.

Установка нагнетателей воздуха на силовые установки пока является самым оптимальным способом повышения мощности.

Отправить ответ

avatar
  Подписаться  
Уведомление о