Реле регулятор генератора своими руками: 403 — Доступ запрещён – Реле регулятора напряжения генератора своими руками: схема

Содержание

Реле регулятора напряжения генератора своими руками: схема

Стабилизатор напряжения в бортовой электросистеме автомобиля – самый важный узел без всякого преувеличения. От качества его работы будет зависеть не только стабильность и длительность срок эксплуатации аккумулятора. При этом даже вполне исправное устройство стабилизации не всегда дает гарантию соответствия напряжения и качества питания электросети автомобиля. Нередко автолюбители задаются вопросом как сделать реле регулятор напряжения генератора более надежным – обратиться к специалистам СТО, собрать или усовершенствовать самостоятельно? Вариантов много.

Реле

Современные стабилизаторы

На современном автотранспорте, как правило, устанавливаются автоколебательные реле. Они работают по принципу отключения питания катушки возбуждения при достижении напряжения верхнего предела 13,5-13,8 В и подключения при нижнем пороге напряжения 14,5-14,6 В.

Стабилизаторы напряжения схема

Таким образом, выходное напряжение постоянно колеблется. Теоретически это не считается недостатком, так как напряжение не выходит за допустимые рамки. Все же это не совсем безопасно. Наверняка опытные водители знают, что слабым местом у этого вида реле являются переходные моменты, когда резко меняются обороты ротора или нагрузочный ток. Особенно неблагоприятный момент возникает при большом токе нагрузки на малых оборотах. В эти моменты колебания напряжения часто превышают верхний порог. За счет кратковременности таких скачков аккумулятор не выйдет со строя сразу, но каждый раз его емкость и соответственно ресурс сокращается.

Решают эту проблему по-разному. Иногда автолюбители просто меняют автоколебательное реле на устаревшее контактно-вибрационное. Более оптимальным решением станет заменить реле на широтно-импульсный стабилизатор или модернизировать «родной» с помощью небольших дополнений.

ШИ-стабилизатор

Широтно-импульсные стабилизаторы характеризуются более стабильной работой, то есть в сеть автомобиля подается почти постоянное напряжение, а небольшие отклонения в пределах нормы носят плавный характер. В схеме устройства использованы те же детали, что и в оригинале, но в то же время включена микросхема К561ТЛ1. Это позволило собрать мультивибратор и формирователь коротких импульсов на 1-м узле. Также упрощен узел управления выходным ключом за счет применения полевого транзистора, повышенной мощности.

ШИ стабилизаторы напряжения схема

Основные узлы:

Узлы регулятора

Цикл работы стабилизатора

С включением зажигания на выходе триггера DD1.1 появляется низкий логический уровень. В следствии, этого током зарядки конденсатора СЗ открывается транзистор VT1. Он в свою очередь начинает подавать на входы элемента DD1.2 высокий уровень, единовременно разряжая конденсатор С4. С появлением на выходе низкого уровня DD1.2 открывает полевой транзистор VT3. Ток с вывода стабилизатора протекает обмотку возбуждения генератора.

После прекращения импульса на выходе DD1.1 образуется высокий уровень и транзистор VT1 закрывается. Происходит зарядка конденсатора С4 током, проходящим через резистор R5 от генератора, который управляется транзистором VT2. В то время как напряжение на конденсаторе С4 опуститься до нижнего предела переключения триггера DD1.2, он переключится. На его выходе возникнет высокий уровень, который закроет транзистор VT3. В целях защиты входных цепей микросхемы DD1 напряжение конденсатора С4 ограничивается диодом VD4, что при его последующей зарядке не приведет к переключению DD1.2. Когда же на выходе генератора снова формируется импульс низкого уровня, процесс начинает повторяться.

Таким образом, стабилизация осуществляется длительностью включенного состояния полевого транзистора, а процессом управляет измерительное устройство, а также генератор тока. Когда возрастает напряжение на выводе генератора нарастает ток коллектора транзистора VT2. При увеличении ампеража конденсатор С4 начинает заряжаться быстрее и продолжительность включенного состояния транзистора VT3 уменьшается. В следствии ток, который протекает через обмотку возбуждения генератора уменьшается и, конечно же, уменьшается выходное напряжение генератора.

При понижении напряжения на выводе от генератора ток на коллекторе транзистора VT2 снижается. В результате время зарядки конденсатора С4 возрастает. Это приводит к более длительному периоду включенности транзистора VT3 и ток, который протекает через обмотку возбуждения генератора, возрастает. Выходное напряжение генератора также увеличивается.

Широтно-импульсный стабилизатор своими руками

Хотя эффективность представленного реле и его серийного производства устройство трудно найти в продаже. К тому же узнать о нем что-либо у продавцов консультантов не всегда удается. Поэтому если есть опыт в радиотехнике, реле регулятор напряжения генератора можно собрать своими руками.

Для приведенной выше принципиальной схемы можно применить следующие элементы и их альтернативные замены.

Широтно-импульсный стабилизатор своими руками

Модернизация регулятора напряжения

Это еще один вариант улучшить качество работы реле и устойчивость его к переходным моментам. За основу взято стандартное реле 50.3702-01, в схему которого добавили всего один резистор и конденсатор.

Стабилизаторы напряжения схема

На схеме доработка обозначена красным цветом и, как видно, не требует больших усилий и особого опыта в радиоэлектронике. При увеличении напряжения в бортовой электросети, конденсатор С2 начинает заряжаться. При это часть тока протекает через базу транзистора VT1 и по величине пропорционален скорости роста напряжения. Это приводит к открытию транзистора VT1 и закрытию транзисторов VT2 и VT3. При этом происходит спад тока в катушке возбуждения, причем более ранний, чем без дополнительной установленной цепи. Это позволяет значительно уменьшить колебания напряжения в сети или вовсе их исключить. То же самое касается и снижения напряжения. Другими словами, рамки допустимого напряжения сужаются, а плавность стабилизации повышается.

На данной схеме также можно внедрить еще одно рациональное предложение. Как известно, выходное напряжение генератора оптимизируется в зависимости от окружающей температуры и зимой должно быть выше на 0,8 В, достигая где-то 14,6 В. По стандарту сезонная подстройка выполняется снятием или установкой перемычек S1, S2 и S3. Установка перемычек исключает из схемы резисторы R1, R2 и R3 и напряжение на выходе возрастает. При снятии перемычек транзисторы снова включаются в работу и напряжение падает. Чтобы этого не делать, упомянутые транзисторы можно заменить одним подстроечным и регулировать выходное напряжение проще и с большей точностью.

Читайте также:

Самодельный регулятор напряжения — MotoRegulator.com

Как я делал Реле-Регулятор (Реле зарядки) для мотоцикла.
Для начала отмечу, что нижеследующий текст является популистским и предназначен для людей, слабо разбирающихся в электронике, поэтому изобилует не совсем корректными сравнениями и упрощениями. Не надо тыкать мне в лицо учебником электротехники и учить меня законам Кирхгофа. Началось все с того, что ребята из дружественного мото-сервиса попросили меня срочно решить «проблемку с РР». Отказать ребятам было нельзя — свои, и я принялся изучать вопрос. Сначала выяснилось, что мотоциклетное РР — это совсем не то, что автомобильное.
Отличий два и все они очень серьёзны.
1) Авто — это стабилизатор.
Мото — это выпрямитель + стабилизатор .
2) Авто — регулирует напряжение на обмотке возбуждения генератора .
Мото — регулирует выходное напряжение генератора .
Есть мотоциклы с генераторами автомобильного типа, но их немного.
Вот тут надо сделать небольшое отступление на тему «что такое сила тока, напряжение, и стабилизатор напряжения». Электрический ток, как известно из школьного курса физики, это «направленное движение электронов». Вдаваться в подробности сейчас не будем, важно уяснить главное — у электрического тока есть множество параметров, но нам наиболее важны два из них — сила тока и напряжение. Ток измеряется в Амперах, а напряжение измеряется в Вольтах. Чтобы понять что это такое, представьте, что ваш провод это канал, а ток — вода текущая по нему. Так вот сила тока это скорость потока воды, а напряжение — уровень воды в канале. Для понимания дальнейшего текста этого хватит.
Теперь о стабилизаторах.
Заморачиваться на выпрямителях мы пока не будем — диод он диод и есть. Задача любого стабилизатора напряжения — получить напряжение, понизить его до заданного уровня и удерживать на этом уровне. По принципу действия стабилизаторы делятся на импульсные, линейные и шунтирующие. Шунтирующий стабилизатор «пускает лишнее напряжение мимо потребителя».
Простейший шунтирующий стабилизатор собирается из двух деталей — резистора и стабилитрона.

Стабилитрон, это такой забавный штук, который, когда напряжение меньше чем нужно, прикидывается что его (стабилитрона) нет (то есть якобы провод оборван), а когда напряжение больше, чем нужно, прикидывается проволочкой (то есть начинает свободно проводить ток). Представьте себе клапан с пружиной, вот принцип тот же. Работает это так. Вот напряжение, меньше чем нужно, стабилитрон ток не проводит, весь ток уходит потребителю. Воды мало, клапан закрыт. Вот напряжение почему-то повысилось и стало больше чем нужно. Стабилитрон начинает проводить ток, и все лишнее «проваливается» мимо потребителя через стабилитрон на массу. Воды много, клапан открылся и слил лишнюю воду. Таким образом, наше напряжение, наш «уровень воды» все время находится примерно на одном значении. Все бы ничего, но не бывает стабилитронов на большие токи. Этот клапан может быть только маленького диаметра. Поэтому сделать стабилизатор для большой силы тока только на стабилитроне — невозможно. Как с этим справляются расскажу позже.
Линейный стабилизатор действует по принципу: «при повышении напряжения ему создаются дополнительные трудности для прохождения». Лучшее сравнение — унитазный бачок. Уровень в бачке маленький — клапан открыт — вода наливается, уровень поднимается — поплавок тащит вверх, клапан закрывается, отверстие всё уже, уже, уже…. Уровень достиг нужного — клапан закрылся. Спустили воду — уровень упал — вода полилась, и всё по новой. Только быстро.
Приделываем к нашему стабилитрону транзистор.

Транзистор это и есть тот самый клапан в бачке. Напряжение маленькое — стабилитрон отключен (говорится «закрыт») — ток открывает транзистор — ток идет через транзистор к потребителю, напряжение повысилось — стабилитрон открылся — ток слился на массу — транзистор открывать уже нечем — он закрылся — отключил источник от потребителя. Ваша любимая «КРЕНка» и есть такой вот линейный стабилизатор, только схема внутри нее посложнее. И все бы ничего но, сам принцип линейного стабилизатора подразумевает «преобразование лишнего тока в тепло». Шунтирующий стабилизатор «пропускает через себя только лишнее». А линейный — всё. Поэтому греется он гораздо больше. И если заставить его стабилизировать большие токи, то
греться он будет быстрее чем остывать. И быстро сгорит. И никакие радиаторы не помогут. А в мотоциклах очень большие токи (я говорю о японцах). Поэтому тот кто советует «сделать РР для мотоцикла на КРЕНке» — бредит. Импульсный стабилизатор действует по похожему принципу, только у него нет промежуточных состояний. Он либо подключает, либо отключает источник от потребителя. Подробности в википедии.
Теперь вернёмся к нашим мотоциклам.
Итак для начала я попробовал собрать классический линейный стабилизатор. Да, да, я наступил на все грабли, на которые можно было наступить. 20-ти амперный тошибовский транзистор шарахнул так, что слышно было на улице. Тогда вместо классического «биполярного» транзистора я применил так называемый «полевой». Полевые транзисторы свободно оперируют большими токами не особо при этом нагреваясь.
Моя первая схема имела следующий вид.

Транзистор VT0 выполняет функцию «чем больше напряжение питания, тем меньше напряжение он выдаёт», микросхема DA1 — «дёргает напряжение, управляющее полевым транзистором, чем меньше напряжение на входе, тем реже дёргает» микросхема DA2 — усиливает напряжение, управляющее полевым тразистором, а то ему с DA1 мало, ну а полевой транзистор VT1 уже выполняет роль того самого клапана в бачке унитаза и питает весь мотоцикл. И ничего. Не перегревается. Эту схему я изготовил в единственном экземпляре, и она работала. О дальнейшей ее судьбе мне ничего не известно. Но судя по тому, что рекламаций мне не высказали, наверно работала она удовлетворительно. Однако это получается импульсный стабилизатор. И у него есть главный недостаток импульсного стабилизатора — большие пульсации. Грубо говоря, напряжение на его выходе не 13 вольт, как надо, а «то много, то мало, а в среднем то что надо». Если мой друг Вася выпил при мне две бутылки пива, а мне не дал ни одной, то теоретически, мы вместе выпили по бутылке пива каждый, а практически Васе пора бить морду. Я показал эту схему лишь для того, чтобы обозначить «этапы большого пути».
Но эту схему собирать не надо.
Именно из-за пульсаций. Мой коллега предложил аналогичную схему с меньшим количеством деталей, но работающую по тому же принципу.

Её тоже сделали. И она тоже работала. Но и это импульсный стабилизатор со всеми своими пульсациями, поэтому от этой схемы так же отказались. Что ж, я стал искать дальше. Очень скоро я обнаружил, что производители японских мотоциклов используют шунтирующие стабилизаторы, но ревностно хранят тайну их устройства.
Вот все что мне удалось найти, листая официальную документацию.

Содержимое «Integrated Circuit» остаётся загадкой. Однако главный принцип ясен — роль шунтирующего стабилизатора (то есть «клапана, сливающего лишнюю воду»), выполняет деталь под названием «тиристор». Это мощный электронный «клапан», который открывается, если на его управляющий контакт пустить ток, а закрывается когда ток через него падает до нуля(почти). Именно этим и занимается Integrated Circuit, осталось додуматься что же у него внутри? Поискав еще, я обнаружил, что не один я заморачиваюсь этой проблемой, и, в общем повторяю путь других людей. Вот только большинство людей остановились на одном и том же этапе — прицепили к тиристору стабилитрон. Попутно изыскатели еще и наделали других ошибок.
Так что я продолжаю показывать схемы, которые собирать не надо :
В этой схеме к стабилитрону зачем-то прилеплен конденсатор большой ёмкости.

Конденсатор большой ёмкости замедляет процесс «переключения напряжения туда-сюда», в линейном стабилизаторе он нужен, здесь же он только мешает стабилитрону нормально работать. Кроме того в этой схеме есть та же проблема, что и в следующей.
В этой схеме на первый взгляд все неплохо. Но тут уже начинается физика с математикой.

Как я уже говорил раньше «стабилитрон это клапан который не может быть слишком большим». Добавлю: слишком маленьким тоже. То есть — вот у вас стабилитрон который должен открываться при напряжении 13 вольт. Но кроме напряжения у нас есть понятие силы тока. Так вот у любого стабилитрона есть минимальный ток, меньше которого он еще не работает, и максимальный ток, больше которого он уже горит. Такой же параметр есть и у тиристора. И они не совпадают. Среднестатистический стабилитрон начинает работать с 5-ти миллиампер и сгорает, если ток выше 30-ти миллиампер. А тиристору, чтоб открыться нужно миллиампер 15. Одному. Но генератор мотоцикла трёхфазный — выдаёт ток с трёх точек. Поэтому тиристоров-то у нас три!
А в этой схеме вообще применены «более другие клапана» под названием «симистор». Симистору, чтоб открыться, в зависимости от модели, нужно от 30-ти до 70-ти миллиампер. Одному. Дальше все зависит от резистора под стабилитроном — если он маленький — стабилитрон сгорит. Если большой — тиристоры не будут нормально открываться. Есть стабилитроны которые держат до 100 миллиампер. Но они начинают работать только с 50-ти. Дело в том, что мотоциклетный генератор выдаёт очень большой разброс напряжений. На холостых это вольт 10, зато на полном газу — 60 вольт не предел. Вспоминаем закон ома «чем больше напряжение, тем больше сила тока». Считаем. 10 вольт генератора делим на 330 ом резистора — получаем 30 миллиампер тока. Обычный стабилитрон уже на пределе. Мощный еще даже не приготовился работать. 60 вольт генератора делим на те же 330 ом — получаем 180 миллиампер. Оно конечно, тиристоры сразу же, за микросекунду «уронят» напряжение обратно, но все же… все же… Может увеличить сопротивление ? Давайте попробуем.
60 / 1200 = 50 миллиампер.
Вроде нормально. Но 10 / 1200 = ?
То-то и оно.
Кроме того в этой схеме есть лишние детали. Следующую схему помещаю просто для коллекции — в ней та же проблема.
К тому же на ней честно написано «Не для сборки !»

А вот эта схема на первый взгляд лишена всех вышеперечисленных недостатков.

Тиристору надо 20 миллиампер ? Стабилитрон работает в разбросе 5-30? Пожалуйста — каждому тиристору свой стабилитрон. Все довольны. Но только вот какая засада — даже если детали сделаны на одном заводе, в один день и на одном станке, они все равно чуть-чуть разные. Вы купите три стабилитрона на 13 вольт, а реально получите один на 12.9 второй на 13 третий на 13.1 вольт. Та же история будет с резисторами — их сопротивление будет отличаться ом на 5-10 в разные стороны. Кроме того генератор изготовлен тоже людьми. И поэтому выдает не абсолютно одинаковые напряжения на каждой точке а чуть-чуть да разные. В итоге какой-то из трёх стабилитронов будет открываться чуть раньше остальных. И открывать тиристор. И на этот тиристор ляжет основная нагрузка. Большая часть «лишнего» напряжения будет «сливаться» через один тиристор и он быстро сдохнет от перенагрузки. То есть эта схема вполне работоспособна при условии максимальной одинаковости деталей. Иначе она будет сильно греться и быстро сгорит. Делаем вывод — стабилитрон должен быть один, общий, и рулить всеми тремя тиристорами одновременно, но между ним и тиристорами должно быть что-то еще, усиливающее ток.
Через некоторое время я нашел вот эту схему.

В принципе ее можно делать. Она будет работать как надо. Но я ее делать не стал. Я перфекционист. Транзисторы, предлагаемые тут, держат ток 100 миллиампер, причём тиристорами-симисторами управляет только один из них — правый — Q2. Если использовать симисторы — 90 миллиампер «съедаться» ими, еще немного уходит на взаимодействие со вторым транзистором, сколько остаётся запаса? Не люблю я так, чтоб впритык. А если взять транзисторы по мощнее, то стабилитрон их «не раскачает» как следует. Опять же — деталей в схеме много, паять ее долго и муторно. Надо двигаться дальше. Надо сказать что тогда я много спорил с автором одной из выше расположенных схем — Dingosobak-ой именно на счёт стабилитрона, и вот я, плюнув на всё, начинаю разрисовывать свой собственный вариант, но тут, Dingosobaka присылает мне схему которую получил от GogiII

Здесь все нормально, за исключением некоторых номиналов резисторов — резисторы R1 и R2 надо уменьшить килоОМ так до трёх, а то на опять-таки многострадальный стабилитрон идёт слишком маленький ток. (Схема требует пересчета многих номиналов, но ввиду её невостребованности делать это никто не собирается — поэтому относитесь к ней как к экспонату в музее). В этой схеме маленький стабилитрон «качает» маленький транзистор, маленький транзистор «качает» транзистор побольше, а большой транзистор «рулит» мощными симисторами — он свободно держит ток в 1000 миллиампер. То есть 1 ампер. Вот это я называю «запас» ! К тому времени схем накопилось много и надо было их как-то друг от друга отличать. Этой схеме я присвоил название исходная .
Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. На этом бы успокоиться, но — нет. Схема-то, для тех, кто «не в теме», сложная. И я стал искать пути упростить изготовление схемы без потери функциональности. Сначала я вознамерился приспособить автомобильное РР к мотоциклу. Исходил я из того что автомобильное РР по сути выполняет ту же функцию, что и Integrated Circuit, с той лишь разницей, что автомобильное РР управляет обмоткой возбуждения, а мотоциклетное — тиристорами-симисторами. Вот что в итоге у меня получилось:
Сначала собираем блок тиристоров-симисторов.

Затем берем автомобильное РР, выкусываем детальки, зачёркнутые крестиками, и впаиваем новые, отмеченные синим.
Внимание ! Нужно реле зарядки под названием 121.3702 . Всяческие 121.3702 -01 , 121.3702 -02 и 121.3702 -03 не годятся !

В зависимости от типа применяемых тиристоров-симисторов придётся подобрать тот резистор, что справа (как считать-подбирать резистор написано в конце статьи). По сути, мы просто собираем предыдущую схему GogiII-Dingosobaka, только с минимальными трудозатратами и максимальным использованием готовых изделий. Настроение было игривое, поэтому эта схема получила название брутальная . Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Дальше я стал делать ту же схему но задался целью найти готовый Integrated Circuit не в виде «РР от жигулей», а в виде готовой законченной микросхемы. И нашёл. Аж три штуки.
Схема приобрела вот такой вид.

За красоту и аккуратность схема получила название гламурная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но тут-то и возник парадокс. Почти у каждого из вас есть дома такая микросхема. В музыкальном центре. Она управляет светодиодными индикаторами. Но кто-нибудь хоть раз видел магнитофон у которого сдох светодиодный индикатор ? Ну не горит она, эта микросхема. Не с чего ей гореть. А раз не горит, значит ее не покупают. А раз не покупают, значит не везут !
Копеечную микросхему купить практически невозможно ее нет в магазинах. Но именно эту схему я собрал себе как запасную. Родное РР у меня пока (тьху-тьху-тьху) живо. И я стал думать дальше. Во всех предыдущих схемах используются тиристоры. Можно использовать и симисторы. Но именно можно а не обязательно. Напомню принцип работы тиристора — на «палочку» подключили массу, на «треугольничек» — плюс, если на управляющий контакт подать плюс — тиристор откроется, если минус — закроется. Только так и никак иначе. Поэтому я не могу использовать с тиристорами очень распространённую микросхему TL431 (она же КРЕН19) — тиристоры, чтобы открыть их, надо подключать к плюсу, а TL431 подключает к минусу. Сначала я пошёл по проторённому пути, и воткнул между TL431 и тиристорами переходной транзистор.

Продолжая модную тогда тему «падонкаффскаго езыка» я назвал схему готичная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но (!) больше я этого делать не буду. Смысл ? Опять много деталей. Меняем шило на мыло. Ну раньше было два транзистора, теперь одна трёхногая микросхема и один транзистор. Разницы-то? Хотя в этой схеме можно вместо стабилитрона с резистором поставить один переменный резистор, тогда появится возможность плавно регулировать напряжение, но переменный резистор это ненадёжная деталь. Особенно в условиях мотоцикла. Спустя почти год (я сделал эту схему в июле 2007-го) ребята из Саратова практически повторили эту схему, применив хоть и другие, но аналогичные детали.

Схема хороша, но сохраняет главный недостаток — много деталей. Микросхема, которую применили саратовчане (так называемый «супервайзер»)держит совсем уж мизерный ток, поэтому они усилили ее дополнительным транзистором. (Вот что непонятно — неужели в Саратове микросхема TL431 это большая проблема чем применённая ими PST529 ?) Когда я начинал, я смотрел в сторону PST529 и подобных, но отказался от них потому что они требуют большого количества дополнительных деталей. А моя задача была — свести количество деталей к минимуму, сохранив достойную функциональность. Вот тут видно как мне предлагают микросхему типа «супервайзер» а я от неё отказываюсь.
Через несколько лет Dyn предложил свой вариант «готичной»:

И успешно её изготовил. Деталей опять много, но ему было не лень.(да, чего уж там — на две три детали то больше… Если кого то интересует изготовление этой схемы — по ссылке выше описание и там же указаны номиналы деталей. Только я немного ошибся — R6 R7 надо поменять местами. Dyn)
Ну а пока я, с подачи Dyn-a, стал изучать симисторы. И обнаружил принципиальное их отличие от тиристоров. А именно — им совершенно не обязательно «на палочку подключили массу, на треугольничек — плюс, открывать плюсом». Им вообще пофиг какая полярность куда подключена. Это резко меняло дело и открывало новые горизонты. Еще раз напомню — все предыдущие схемы рассчитаны под тиристоры . В них можно использовать симисторы, но не обязательно. А я сделал схему, которая будет работать только с симисторами. И в ней симисторы работают в удобном для себя режиме.
В итоге схема приняла такой вид.

В уже сложившейся традиции схема была названа зач0тная. Ещё раз отмечу — с этим вариантом Integrated circuit можно использовать только симисторы, тиристоры использовать нельзя ! И включаются эти симисторы не так как на всех предыдущих схемах.
То есть взять эту схемку и пришпилить к ней «силовой блок» из прeдыдущих схем — нельзя! Запас по току правда не очень велик — TL431 держит всего 150 миллиампер, но все же это вполне допустимо. Но, как уже отмечалось, я — перфекционист и всё люблю делать с запасом, поэтому я заменил TL431 на классический нижний ключ ULN2003. (Так же можно использовать аналог TD62083). Эта микросхема есть в продаже, работает в этой схеме в своём нормальном режиме и держит ток 500 миллиампер. C этой деталью схема упростилась уже до полного безобразия, а так как принцип не поменялся, получила название зач0тная-2. Эти схемы я делал и делаю до сих пор. И они работают. Их делают и другие люди. И у них эти схемы так же работают.



Некоторое время назад товарищ Poner предложил использовать вместо ключа оптореле.
Собраный им образец показал свою работоспособность, хотя и чуть худшие характеристики.


От себя добавлю, что не вижу причин, почему бы не использовать в качестве ключа любой подходящий полевой МОП транзистор (MOSFET) .

После прочтения всей этой моей писанины, у вас наверняка накопились вопросы. Постараюсь на них ответить.
Многие спрашивают, почему я пишу «тиристоры» а на схемах рисую симисторы BTA26 ?
Причина проста — из-за лени. Большинство тиристоров-симисторов нельзя использовать без прокладок и неметаллических винтов! А вот симисторы BTA16-24-26-41 — можно. Если же использовать другие тиристоры-симисторы (25TTS, BT152, BT225 и т. д.) то приходится ставить каждый на прокладку, да прикручивать его неметаллическим винтом, да следить, чтоб не замкнуло, это так лениво.
Так же многие спрашивают какие можно еще применять тиристоры-симисторы. Да в общем-то любые, рассчитанные на ток не меньше 20-ти ампер. Вот прям прийти в магазин и сказать «дайте мне три тиристора или симистора ампер на двадцать.» Вообще-то можно и меньше (10-15 ампер), но как уже отмечалось — лично я люблю все делать с запасом. Кроме того, чем на меньше ампер рассчитан тиристор-симистор тем больше он будет греться.
Только если использовать симисторы, то для схем «исходная», «гламурная», «брутальная» и «готичная» годятся не любые симисторы а только четырёхквадрантные (4Q). Ещё бывают трёхквадрантные (3Q или hi-com) и они для вышеназванных схем не годятся.
А вот для схем «зач0тная» и «зач0тная-2» не только подходят любые симисторы — и 4Q и 3Q, но 3Q даже предпочтительнее, так как будут меньше нагреваться.
Но самый лучший симистор для наших целей это конечно BTA26 (он же ВТА24 в другом корпусе). Он подходит ко всем схемам, надёжен и недорог.
К тому же выпускается в двух вариантах BTA26бла-бла-бла B это 4Q, а BTA26бла-бла-бла W это 3Q.
Кроме того, под неизвестно-какие тиристоры-симисторы потребуется пересчитать номиналы резисторов, иначе тиристоры-симисторы будут сильно греться и в итоге сгорят.
Разберём этот момент на примере симисторов BTA140.
Открываем даташыт (ссылка)
Ищем в таблицах параметр I GT (Gate Trigger Current) видим максимальное значение 35 миллиампер.
Чуть-чуть «откатываемся назад» от максимального значения, чтобы не грузить симистор, и считаем:
14 вольт / 0.03 ампер = 470 ом.
То есть в управляющем контакте одного симистора BTA140 должно быть 470 ом.
То есть если взять схему «зачотная», то все резисторы между микросхемой и симисторами должны быть по 470 ом.
Если взять схему «брутальная» — по 360 а общий резистор в переделанном РР от жигулей — 110 ом.
Единственно чего нельзя делать — это ставить один общий резистор на все три тиристора-симистора, а их управляющие контакты собирать в один пучок. Тогда между тиристорами-симисторами возникнут паразитные связи и всё пойдёт в разнос. У каждого тиристора-симистора должен быть свой «персональный» резистор хотя бы ом на 70, а остальное может быть общим.
Короче, купив тиристоры-симисторы, уточняйте все эти моменты по документации на сайте оллдаташыт !
Часто меня спрашивают какой стабилитрон нужно применять в схеме.
Стабилитронов много, и многие годятся, но нужно учитывать следующие моменты:
Стабилитрон нужен на правильный ток. То есть минимальный ток стабилитрона должен быть не больше 5-ти миллиампер, а максимальный — не меньше 15-ти. Причём эти токи взаимосвязаны, рабочий участок стабилитрона обычно равен 20-30 миллиампер, то есть если у стабилитрона максимальный ток 50 миллиампер, то его минимальный ток будет миллиампер 50-30=20, то есть такой стабилитрон не годится. В магазинах частенько обозначают стабилитроны по мощности, например «13 вольт 0.5 ватта».
Это значит, что максимальный ток стабилитрона 0.5W / 13v = 30 миллиампер. Значит у этого стабилитрона минимальный ток будет около 1 миллиампера, и такой стабилитрон подойдёт.
Стабилитрон нужен на правильное напряжение, то есть на 14 вольт. Вольт туда — вольт сюда на стабилитроне, аукнется полутора вольтами на выходе схемы. Если стабилитрона на 14 вольт под руками нет, можно набрать его из нескольких стабилитронов в сумме (7+7 6+8) или добавить нужное количество любых маломощных кремниевых диодов в прямом включении, из расчёта, что 1 диод добавляет к стабилитрону 0.7 вольта. Например к стабилитрону на 13 вольт нужен 1 диод вроде 1N400*, КД521 , КД522 , КД509 , КД510 итд. C тем же успехом вместо диода можно использовать второй такой же стабилитрон. С точки зрения сборки это даже предпочтительнее — взял два стабилитрона на 13 вольт, спаял метками друг к другу, воткнул в схему любой стороной, и вопрос закрыт.

Теперь пару слов о той части мотоциклетного РР о которой мы еще не говорили — о выпрямительной. Токи потребляемые мотоциклом исчисляются десятками ампер, поэтому диоды надо применять мощные. Если объем двигателя кубиков 400-600, то вполне хватит 30-ти амперных диодов. Я обычно применяю готовый 36-ти амперный диодный мост (сборка на 6 диодов) 36MT. Но если объём двигателя большой — 36МТ не справится. Зависимость проста — большой двигатель труднее крутить стартером, значит стартер ставится более мощный, чтоб его крутить нужен мощный аккумулятор, значит он потребляет большой ток при зарядке. Для того чтоб не рисковать надо использовать 40-ка а то и 50-ти амперные диоды. Например 40CTQ 50HQ 52CPQ и т. д.
Вот например вариант «зач0тной-2» на трёх 50-ти амперных мостах KBPC5006 (они же MB506) и трёх симисторах BTA41 (все резисторы по 300 ом).

Про себя я называю этот вариант Ever Est что в переводе с латыни означает «вечный». Еще одно замечание — по той же причине (большие токи) провода, которые используются, должны быть очень толстыми. Иначе будет «чота я спаял а оно не работает». Я использую провода сечением 2-3 миллиметра.
Ещё один важный момент — радиатор. Лучший радиатор — крышка канализационного люка прикрученная на траверсу. Радиатор от старой РР не годится — он маленький. В родных РР бескорпусные детали приварены к радиатору, этим достигается лучший тепловой контакт. Прикручивая обычные детали к неровной поверхности «родного» радиатора вы не добьётесь такого же хорошего теплового контакта. Поэтому радиатор должен быть большой (я использую примерно 8см на 10см с высотой рёбер 2см) и иметь хотя бы одну идеально ровную поверхность (туда вы прикрутите детали). Ну и о проверке — проверять схему можно только полностью подключенной! Если вы прицепите три провода от генератора, а плюс и минус никуда не подключив будете мерить тестером — вы ничего не увидите. Схема работает только в полном подключении (впрочем так же себя ведут и «родные» РР). Если вы боитесь за мотоцикл то проверяйте на заменителе (аккумулятор плюс лампочка).

Никогда, ни при каких обстоятельствах, категорически НЕЛЬЗЯ сдёргивать клемму с аккумулятора на работающем мотоцикле ! Это верный способ убить мозг! (если вы это уже делали и мозг до сих пор жив, вам просто повезло)
Пара фоток как это выглядит в реале:
(Но я вас умоляю — не надо делать РР по фоткам ! РР надо делать по схемам. А фотки я помещаю исключительно для подтверждения, что всё написанное выше не теоретические измышлизмы, а вполне реальная практика)



После сборки и проверки обязательно залить эпоксидкой! Иначе от вибрации у деталей поотваливаются «ножки». Причем быстро. В течение дня-двух. Вот собственно и всё.
Если будут вопросы — задавайте в разделе ниже, тот который «обсуждения». P.S. Как вы заметили, я постоянно обновляю этот постинг. Дело в том, что некоторые подробности, которые я сперва не описывал, для меня само-собой разумеющееся, а вот для многих читателей оказались непонятны. Поэтому как только я получаю вопрос — ответ на него я вношу в этот постинг. Так что не стесняйтесь, спрашивайте.
Часто задается вопрос родной регулятор мотоцикла шести контактный, все схемы пятиконтактные — как поступить?
В некоторых мотоциклах сделано так, что управляющая схема регулятора запитывается от замка зажигания. То есть при выключенном замке зажигания нет утечки тока через регулятор и аккумулятор через него не разряжается.
Таким образом на регулятор приходит шесть проводов. Три фазы (обычно желтых) из генератора. Минус (он же корпус мотоцикла). Плюс аккумулятора и плюс с замка зажигания.
Варианта два.
Либо плюнуть на все умности и оставить провод с замка зажигания не при делах. Только его изолировать от реальности тщательно. И поставить пятиконтактный регулятор. Это на случай , например, установки не родного регулятора.
Либо если вы сами собрали схему, то руководствуясь приложенным рисунком сделать разрыв между точками А и В. Точку А подать на провод идущий к замку зажигания. Точку В подать на провод идущий к аккумулятору.
Если же вас интересует обратный процес — установка шестиконтактного регулятора (купленного по случаю) в мотоцикл где на регулятор приходит лишь пять проводов, тогда все так же три фазы на генератор, затем найдите минус (прозвоните тестером — минус звонится на корпус регулятора накоротко),остальные два провода скрутить и на плюс.

Еще часто бывает что выходные провода дублируются. из регулятора выходит два минуса и два плюса. Это легко понять по одинаковому цвету пар проводов. Это другая история — не перепутайте.

Источник: moto-electro.ru
Текст отредактирован, орфография и пунктуация сохранены, все оригинальные ссылки сохранены.


Ниже вы можете оставить свой комментарий или поделиться опытом с другими читателями.

Комментарии публикуются после модерации, оскорбления, ссылки и спам будут удалены.

Реле регулятора напряжения генератора: устройство и принцип работы

Создано реле регулятор напряжения генератора для корректировки выдаваемого в бортовую сеть и на клеммы аккумулятора «вольтажа» в заданном диапазоне 13,8 – 14,5 В (реже до 14,8 В). Кроме того, регулятор корректирует напряжение на обмотке самовозбуждения генератора.

Рис. 1 Реле регулятор напряжения генератора

Рис. 1 Реле регулятор напряжения генератора

Назначение реле регулятора напряжения

Независимо от стажа и стиля вождения владелец авто не может обеспечить одинаковые обороты двигателя в разные моменты времени. То есть, коленвал ДВС, передающий крутящий момент генератору, вращается с разной скоростью. Соответственно, генератор вырабатывает разное напряжение, что крайне опасно для АКБ и прочих потребителей бортовой сети.

Поэтому замена реле регулятора генератора должна производится при недозаряде и перезаряде аккумулятора, горящей лампочке, мигании фар и прочих перебоях электроснабжения бортовой сети.

Реле регулятор

Взаимосвязь источников тока авто

В транспортном средстве находится минимум два источника электроэнергии:

  • аккумулятор – необходим в момент запуска ДВС и первичного возбуждения обмотки генератора, энергию не создает, а только расходует и накапливает в момент подзарядки
  • генератор – питает бортовую сеть на любых оборотах и подпитывает АКБ только на высоких оборотах
Рис. 2 В машине генератор и аккумулятор объединены в общую сеть

Рис. 2 В машине генератор и аккумулятор объединены в общую сеть

В бортовую сеть необходимо подключение обоих указанных источников для корректной работы двигателя и прочих потребителей электричества. При поломке генератора АКБ «протянет» максимум 2 часа, а без аккумулятора не заведется двигатель, приводящий в движение ротор генератора.

Существуют исключения – например, а счет остаточной намагниченности обмотки возбуждения штатный генератор ГАЗ-21 запускается самостоятельно при условии постоянной эксплуатации машины. Можно завести авто « с толкача», если в нем установлен генератор постоянного тока, с прибором переменного тока такой трюк невозможен.

Рис. 3 Заводка ДВС с толкача

Рис. 3 Заводка ДВС с толкача

Задачи регулятора напряжения

Из школьного курса физики каждый автолюбитель должен помнить принцип работы генератора:

  • при взаимном перемещении рамки и окружающего ее магнитного поля в ней возникает электродвижущая сила
  • электромагнитом генераторов постоянного тока служат статоры, ЭДС, соответственно возникает в якоре, ток снимается с коллекторных колец
  • в генераторе переменного тока намагничивается якорь, электроэнергия возникает в обмотках статора
Рис. 4 Принцип действия генератора авто

Рис. 4 Принцип действия генератора авто

Упрощенно можно представить, что на величину выходящего с генератора напряжения влияет значение магнитной силы и скорость вращения поля. Основная проблема генераторов постоянного тока – пригорание и залипание щеток при съеме с якоря токов большой величины – решена переходом на генераторы переменного тока. Ток возбуждения, подающийся на ротор для возбуждения магнитной индукции, на порядок ниже, снимать электроэнергию с неподвижного статора гораздо легче.

Однако вместо постоянно расположенных в пространстве клемм «–» и «+» производители авто получили постоянное изменение плюса и минуса. Подзарядка аккумулятора переменным током не возможна в принципе, поэтому диодным мостиком его предварительно выпрямляют.

Рис. 5 Выпрямитель генератора

Рис. 5 Выпрямитель генератора

Из этих нюансов плавно вытекают задачи, решаемые реле генератора:

  • подстройка тока в обмотке возбуждения
  • выдерживание диапазона 13,5 – 14,5 В в бортовой сети и на клеммах аккумулятора
  • отсечение питания обмотки возбуждения от АКБ при заглушенном двигателе
Рис. 6 Назначение реле регулятора напряжения

Рис. 6 Назначение реле регулятора напряжения

Поэтому называют регулятор напряжения еще и реле зарядки, а на панель выведена сигнальная лампа процесса подзарядки АКБ. В конструкцию генераторов переменного тока функция отсечения обратного тока заложена по умолчанию.

Разновидности реле регуляторов

Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:

  • внешние – повышают ремонтопригодность генератора
  • встраиваемые – в пластину выпрямителя или щеточный узел
  • регулирующие по минусу – появляется дополнительный провод
  • регулирующие по плюсу – экономичная схема подключения
  • для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
  • для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
  • двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
  • трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
  • многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
  • транзисторные – в современных авто не используются
  • релейные – улучшенная обратная связь
  • релейно-транзисторные – универсальная схема
  • микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
  • интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток
Рис. 7 Выносное реле

Рис. 7 Выносное реле

Рис. 8 Реле встроено в щеточный узел

Рис. 8 Реле встроено в щеточный узел

Рис. 9 Регулятор двухуровневый

Рис. 9 Регулятор двухуровневый

Рис. 10 Реле трехуровневое

Рис. 10 Реле трехуровневое

Рис. 11 Регулятор транзисторно-релейный

Рис. 11 Регулятор транзисторно-релейный

Рис. 12 Схема реле микроконтроллерного

Рис. 12 Схема реле микроконтроллерного

Рис. 13 Регулятор интегральный

Рис. 13 Регулятор интегральный

Внимание: Без доработки схемы «плюсовой» и «минусовой» регулятор напряжения являются не взаимозаменяемыми приборами.

Реле генераторов постоянного тока

Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.

При диагностике проверка реле происходит на выполнение трех его функций:

  • отсечка аккумулятора во время стоянки машины
  • ограничение максимального тока на выходе генератора
  • регулировка напряжения для обмотки возбуждения
Рис. 14 Регулятор напряжения генератора постоянного тока

Рис. 14 Регулятор напряжения генератора постоянного тока

При любой неисправности требуется ремонт.

Реле генераторов переменного тока

В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.

Рис. 15 Реле для генератора переменного тока

Рис. 15 Реле для генератора переменного тока

Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.

Встроенные и внешние регуляторы

Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине.

Например, если выносное реле подключено к катушке зажигания, его работа будет направлена на регулировку напряжения лишь на этом участке бортовой сети. Поэтому, прежде чем узнать, как проверить реле выносного типа, следует убедиться, что оно подключено правильно.

Управление по «+» и «–»

В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:

  • при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
  • если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору
Рис. 16 Схема включения регулятора в разрыв плюсового провода

Рис. 16 Схема включения регулятора в разрыв плюсового провода

Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.

Двухуровневые

На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:

  • через реле проходит электрический ток
  • возникающее магнитное поле притягивает рычаг
  • сравнивающим устройством служит пружина с заданным усилием
  • при увеличении напряжения контакты размыкаются
  • на возбуждающую обмотку поступает меньший ток
Рис. 17 Механический регулятор напряжения

Рис. 17 Механический регулятор напряжения

Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:

  • делитель напряжения собран из резисторов
  • стабилитрон является задающим устройством

Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.

Трехуровневые

Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:

  • напряжение выходит с генератора на специальную схему через делитель
  • информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
  • сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку
Рис. 18 Трехуровневый регулятор

Рис. 18 Трехуровневый регулятор

Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.

Принцип работы реле регулятора

Благодаря встроенным резисторам и специальным схемам реле получает возможность сравнивать величину вырабатываемого генератором напряжения. После чего, слишком высокое значение приводит к отключению реле, чтобы не перезарядить аккумулятор и не испортить электроприборы, подключенные в бортовую сеть.

Любые неисправности приводят именно к этим последствиям, приходит в неисправность батарея АКБ или резко увеличивается эксплуатационный бюджет.

Переключатель лето/зима

Вне зависимости от сезона и температуры воздуха работа генератора всегда стабильна. Как только его шкив начинает вращаться, электроток вырабатывается по умолчанию. Однако зимой внутренности аккумулятора замерзают, он восполняет заряд значительно хуже, чем летом.

Переключатели лето/зима находятся либо на корпусе регулятора напряжения, либо этим обозначением подписаны соответствующие разъемы, которые нужно найти и подсоединить к ним проводку в зависимости от сезона.

Рис. 19 Регулятор напряжения с зимними и летними клеммами

Рис. 19 Регулятор напряжения с зимними и летними клеммами

Ничего необычного в этом переключателе нет, это лишь грубые настройки реле регулятора, позволяющие повысить до 15 В напряжение на клеммах аккумулятора.

Подключение в бортовую сеть генератора

Если при замене генератора вы подключаете новый прибор самостоятельно, необходимо учесть нюансы:

  • вначале следует проверить целостность и надежность контакта провода от кузова машины к корпусу генератора
  • затем можно подсоединять клемму Б реле регулятора с «+» генератора
  • вместо «скруток», начинающих греться через 1 – 2 года эксплуатации, лучше использовать пайку проводов
  • заводской провод нужно заменить кабелем сечения 6 мм2 минимум, если вместо штатного генератора монтируется электроприбор, рассчитанный на ток больше 60 А
  • амперметр в цепи генератор/аккумулятор показывает, мощность какого источника электроснабжения в данный момент выше в бортовой сети
Рис. 20 Подключение генератора на примере ВАЗ

Рис. 20 Подключение генератора на примере ВАЗ

Амперметры – нужные приборы, с помощью которых можно определить заряд АКБ и работоспособность генератора. Без особых причин не рекомендуется убирать их из схемы.

Схемы подключения регулятора выносного

Монтируется выносное реле регулятора напряжения генератора только после выяснения, в разрыв какого провода оно должно быть подключено. Например:

  • на старых РАФ, Газелях и «Бычках» используются реле 13.3702 в полимерном или стальном корпусе с двумя контактами и двумя щетками, монтируются в «–» разрыв цепи, клеммы всегда промаркированы, «+» обычно берется с катушки зажигания (Б-ВК клемма), контакт Ш регулятора соединяется со свободной клеммой щеточного узла
  • в «жигулях» применяются реле регуляторы 121.3702 белого и черного цвета, существуют двойные модификации, в которых при выходе из строя одного прибора работа второго устройства продолжается простым переключением на него, монтируется в разрыв «+» клеммой 15 к выводу катушки зажигания Б-ВК, к щеточному узлу крепится проводом клемма 67

Встраиваемые реле-регуляторы автолюбители называют «шоколадками», маркированными Я112. Они монтируются в специальные щеткодержатели, прижимаются винтами и защищаются дополнительно крышкой.

На автомобилях ВАЗ реле обычно встроены в щеточный узел, полная маркировка Я212А11, подключаются к замку зажигания.
Если владелец меняет штатный генератор на старом отечественном ВАЗ на устройство переменного тока от иномарки или современной Лады, подключение производится по другой схеме:

  • вопрос крепления корпуса автолюбитель решает самостоятельно
  • аналогом клеммы «плюс» здесь служит контакт В или В+, его включают в бортовую сеть через амперметр
  • выносные реле регуляторы здесь обычно не используются, а встраиваемые уже интегрированы в щеточный узел, из них выходит единственный провод с маркировкой D либо D+, который подсоединяется к замку зажигания (к клемме катушки Б-ВК)
Рис. 21 Замена штатного реле трехуровневым регулятором

Рис. 21 Замена штатного реле трехуровневым регулятором

Для дизельных ДВС в генераторах может присутствовать клемма W, которая присоединяется к тахометру, ее игнорируют при установке на авто с бензиновым мотором.

Проверка подключения

После установки трехуровневого или иного реле-регулятора необходима проверка работоспособности:

  • двигатель заводится
  • напряжение в бортовой сети контролируется на разных оборотах

После установки генератора переменного тока и подключения его по вышеприведенной схеме владельца может ожидать «сюрприз»:

  • при включении ДВС запускается генератор, измеряется напряжение на средних, больших и малых оборотах
  • после выключения зажигания ключом …. двигатель продолжает работать

В этом случае заглушить ДВС можно либо сняв провод возбуждения, либо отпустив сцепление с одновременным нажатием тормоза. Все дело в наличии остаточной намагниченности и постоянном самовозбуждении обмотки генератора. Проблема решается установкой в разрыв возбуждающего провода лампочки:

  • она горит при незапущенном генераторе
  • гаснет после его запуска
  • проходящий через лампу ток недостаточен, чтобы возбудить обмотку генератора

Эта лампа автоматически становится индикатором наличия зарядки АКБ.

Диагностика реле регулятора

Определить поломки регулятора напряжения можно по признакам косвенным. Прежде всего, это некорректная зарядка АКБ:

  • перезаряд – выкипает электролит, раствор кислоты попадает на детали кузова
  • недозаряд – ДВС не запускается, лампы горят в пол накала

Однако предпочтительнее диагностика приборами – вольтметром или тестером. Любое отклонение от максимального значения напряжения 14,5 В (в некоторых авто бортовая сеть рассчитана на 14,8 В) на больших оборотах или минимального значения 12,8 В на малых оборотах становится причиной замены/ремонта реле регулятора.

Встроенного

Чаще всего регулятор напряжения интегрирован в щетки генератора, поэтому необходимо уровневое обследование этого узла:

  • после снятия защитной крышки и ослабления винтов щеточный узел извлекается наружу
  • при износе щеток (осталось меньше 5 мм их длины) замена должна производится в обязательном порядке
  • диагностика генератора мультиметром производится в комплекте с аккумулятором или зарядным устройством
  • «минусовой» провод от источника тока замыкается на соответствующую пластину регулятора
  • «плюсовой» провод от ЗУ или АКБ подключается к аналогичному разъему реле
  • тестер устанавливается в режим вольтметра 0 – 20 В, щупы накладываются на щетки
  • в диапазоне 12,8 – 14,5 В между щетками должно быть напряжение
  • при увеличении напряжения больше 14,5 В стрелка вольтметра должна быть на нуле
Рис. 22 Диагностика реле встроенного

Рис. 22 Диагностика реле встроенного

В данном случае вместо вольтметра можно использовать лампу, которая должна гореть в указанном интервале напряжения, гаснуть при увеличении этой характеристики больше этого значения.

Провод, управляющий тахометром (маркировка W только на реле для дизелей) прозванивается мультиметром в режиме тестера. На нем должно быть сопротивление около 10 Ом. При снижении этого значения провод «пробит», его следует заменить новым.

Выносного

Никаких отличий в диагностике для выносного реле не существует, зато его не нужно демонтировать из корпуса генератора. Проверить реле регулятор напряжения генератора можно при работающем двигателе, изменяя обороты с низких на средние, затем высокие. Одновременно с увеличением оборотов нужно включить дальний свет (как минимум), кондиционер, монитор и прочие потребители (как максимум).

Рис. 23 Диагностика выносного регулятора напряжения

Рис. 23 Диагностика выносного регулятора напряжения

Таким образом, при необходимости владелец транспортного средства может заменить штатное реле регулятор напряжения на более современную модификацию встраиваемого или выносного типа. Диагностика работоспособности доступна собственными силами при наличии обычной автомобильной лампы.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

простые самодельные схемы для повторения

Регулятор напряжения своими рукамиВ электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Прибор реостатСамым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • Резисторы для изготовления регуляторарезисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Характеристика регулятораРабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • Инструменты для работыпаяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Простая схема регулятораЕсли управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

Наименование Номинал Аналог
Резистор R1 470 кОм
Резистор R2 10 кОм
Конденсатор С1 0,1 мкФ х. 400 В
Диод D1 1N4007 1SR35–1000A
Светодиод D2 BL-B2134G BL-B4541Q
Динистор DN1 DB3 HT-32
Симистор DN2 BT136 КУ 208

Схема симисторного регулятораПринцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Схема Реле напряжения

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Схема блока питания

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Задумался я об этой штуке прошлой зимой, когда короткие поездки по городу (дом-работа, дом-магазин и т.д.) с включенными всеми потребителями начали давать о себе знать. Многие, наверное, слышали про установку «повышающего диода на регулятор напряжения», так вот, прочитав данную статью я задумался: при таком раскладе напряжение в бортовой сети в ручную не регулируется, просто становится больше на то значение, на какое упадет напряжение при прохождении тока через диод. Для начала немного теории: при прохождении тока через диод, напряжение падает в среднем на 0,5 вольта (в зависимости от диода), и штатный регулятор думает, что напряжение упало в бортовой сети, и заставляет генератор давать большее напряжение.
Практика: берем ту же схему, что и для «повышающего диода» и добавляем к ней второй диод и переключатель на 3 положения, причем диод можно использовать любой, только, чтоб он был рассчитан на ток не менее 5А, далее собираем всё вот по такой схеме

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

И вуаля первое положение 14,2 В, второе положение 15,4 В, третье положение 14,8 В

Стабилизатор напряжения в бортовой электросистеме автомобиля – самый важный узел без всякого преувеличения. От качества его работы будет зависеть не только стабильность и длительность срок эксплуатации аккумулятора. При этом даже вполне исправное устройство стабилизации не всегда дает гарантию соответствия напряжения и качества питания электросети автомобиля. Нередко автолюбители задаются вопросом как сделать реле регулятор напряжения генератора более надежным – обратиться к специалистам СТО, собрать или усовершенствовать самостоятельно? Вариантов много.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Современные стабилизаторы

На современном автотранспорте, как правило, устанавливаются автоколебательные реле. Они работают по принципу отключения питания катушки возбуждения при достижении напряжения верхнего предела 13,5-13,8 В и подключения при нижнем пороге напряжения 14,5-14,6 В.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Таким образом, выходное напряжение постоянно колеблется. Теоретически это не считается недостатком, так как напряжение не выходит за допустимые рамки. Все же это не совсем безопасно. Наверняка опытные водители знают, что слабым местом у этого вида реле являются переходные моменты, когда резко меняются обороты ротора или нагрузочный ток. Особенно неблагоприятный момент возникает при большом токе нагрузки на малых оборотах. В эти моменты колебания напряжения часто превышают верхний порог. За счет кратковременности таких скачков аккумулятор не выйдет со строя сразу, но каждый раз его емкость и соответственно ресурс сокращается.

Решают эту проблему по-разному. Иногда автолюбители просто меняют автоколебательное реле на устаревшее контактно-вибрационное. Более оптимальным решением станет заменить реле на широтно-импульсный стабилизатор или модернизировать «родной» с помощью небольших дополнений.

ШИ-стабилизатор

Широтно-импульсные стабилизаторы характеризуются более стабильной работой, то есть в сеть автомобиля подается почти постоянное напряжение, а небольшие отклонения в пределах нормы носят плавный характер. В схеме устройства использованы те же детали, что и в оригинале, но в то же время включена микросхема К561ТЛ1. Это позволило собрать мультивибратор и формирователь коротких импульсов на 1-м узле. Также упрощен узел управления выходным ключом за счет применения полевого транзистора, повышенной мощности.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Цикл работы стабилизатора

С включением зажигания на выходе триггера DD1.1 появляется низкий логический уровень. В следствии, этого током зарядки конденсатора СЗ открывается транзистор VT1. Он в свою очередь начинает подавать на входы элемента DD1.2 высокий уровень, единовременно разряжая конденсатор С4. С появлением на выходе низкого уровня DD1.2 открывает полевой транзистор VT3. Ток с вывода стабилизатора протекает обмотку возбуждения генератора.

После прекращения импульса на выходе DD1.1 образуется высокий уровень и транзистор VT1 закрывается. Происходит зарядка конденсатора С4 током, проходящим через резистор R5 от генератора, который управляется транзистором VT2. В то время как напряжение на конденсаторе С4 опуститься до нижнего предела переключения триггера DD1.2, он переключится. На его выходе возникнет высокий уровень, который закроет транзистор VT3. В целях защиты входных цепей микросхемы DD1 напряжение конденсатора С4 ограничивается диодом VD4, что при его последующей зарядке не приведет к переключению DD1.2. Когда же на выходе генератора снова формируется импульс низкого уровня, процесс начинает повторяться.

Таким образом, стабилизация осуществляется длительностью включенного состояния полевого транзистора, а процессом управляет измерительное устройство, а также генератор тока. Когда возрастает напряжение на выводе генератора нарастает ток коллектора транзистора VT2. При увеличении ампеража конденсатор С4 начинает заряжаться быстрее и продолжительность включенного состояния транзистора VT3 уменьшается. В следствии ток, который протекает через обмотку возбуждения генератора уменьшается и, конечно же, уменьшается выходное напряжение генератора.

При понижении напряжения на выводе от генератора ток на коллекторе транзистора VT2 снижается. В результате время зарядки конденсатора С4 возрастает. Это приводит к более длительному периоду включенности транзистора VT3 и ток, который протекает через обмотку возбуждения генератора, возрастает. Выходное напряжение генератора также увеличивается.

Широтно-импульсный стабилизатор своими руками

Хотя эффективность представленного реле и его серийного производства устройство трудно найти в продаже. К тому же узнать о нем что-либо у продавцов консультантов не всегда удается. Поэтому если есть опыт в радиотехнике, реле регулятор напряжения генератора можно собрать своими руками.

Для приведенной выше принципиальной схемы можно применить следующие элементы и их альтернативные замены.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Модернизация регулятора напряжения

Это еще один вариант улучшить качество работы реле и устойчивость его к переходным моментам. За основу взято стандартное реле 50.3702-01, в схему которого добавили всего один резистор и конденсатор.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

На схеме доработка обозначена красным цветом и, как видно, не требует больших усилий и особого опыта в радиоэлектронике. При увеличении напряжения в бортовой электросети, конденсатор С2 начинает заряжаться. При это часть тока протекает через базу транзистора VT1 и по величине пропорционален скорости роста напряжения. Это приводит к открытию транзистора VT1 и закрытию транзисторов VT2 и VT3. При этом происходит спад тока в катушке возбуждения, причем более ранний, чем без дополнительной установленной цепи. Это позволяет значительно уменьшить колебания напряжения в сети или вовсе их исключить. То же самое касается и снижения напряжения. Другими словами, рамки допустимого напряжения сужаются, а плавность стабилизации повышается.

На данной схеме также можно внедрить еще одно рациональное предложение. Как известно, выходное напряжение генератора оптимизируется в зависимости от окружающей температуры и зимой должно быть выше на 0,8 В, достигая где-то 14,6 В. По стандарту сезонная подстройка выполняется снятием или установкой перемычек S1, S2 и S3. Установка перемычек исключает из схемы резисторы R1, R2 и R3 и напряжение на выходе возрастает. При снятии перемычек транзисторы снова включаются в работу и напряжение падает. Чтобы этого не делать, упомянутые транзисторы можно заменить одним подстроечным и регулировать выходное напряжение проще и с большей точностью.

Создано реле регулятор напряжения генератора для корректировки выдаваемого в бортовую сеть и на клеммы аккумулятора «вольтажа» в заданном диапазоне 13,8 – 14,5 В (реже до 14,8 В). Кроме того, регулятор корректирует напряжение на обмотке самовозбуждения генератора.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Назначение реле регулятора напряжения

Независимо от стажа и стиля вождения владелец авто не может обеспечить одинаковые обороты двигателя в разные моменты времени. То есть, коленвал ДВС, передающий крутящий момент генератору, вращается с разной скоростью. Соответственно, генератор вырабатывает разное напряжение, что крайне опасно для АКБ и прочих потребителей бортовой сети.

Поэтому замена реле регулятора генератора должна производится при недозаряде и перезаряде аккумулятора, горящей лампочке, мигании фар и прочих перебоях электроснабжения бортовой сети.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Взаимосвязь источников тока авто

В транспортном средстве находится минимум два источника электроэнергии:

  • аккумулятор – необходим в момент запуска ДВС и первичного возбуждения обмотки генератора, энергию не создает, а только расходует и накапливает в момент подзарядки
  • генератор – питает бортовую сеть на любых оборотах и подпитывает АКБ только на высоких оборотах

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

В бортовую сеть необходимо подключение обоих указанных источников для корректной работы двигателя и прочих потребителей электричества. При поломке генератора АКБ «протянет» максимум 2 часа, а без аккумулятора не заведется двигатель, приводящий в движение ротор генератора.

Существуют исключения – например, а счет остаточной намагниченности обмотки возбуждения штатный генератор ГАЗ-21 запускается самостоятельно при условии постоянной эксплуатации машины. Можно завести авто « с толкача», если в нем установлен генератор постоянного тока, с прибором переменного тока такой трюк невозможен.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Задачи регулятора напряжения

Из школьного курса физики каждый автолюбитель должен помнить принцип работы генератора:

  • при взаимном перемещении рамки и окружающего ее магнитного поля в ней возникает электродвижущая сила
  • электромагнитом генераторов постоянного тока служат статоры, ЭДС, соответственно возникает в якоре, ток снимается с коллекторных колец
  • в генераторе переменного тока намагничивается якорь, электроэнергия возникает в обмотках статора

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Упрощенно можно представить, что на величину выходящего с генератора напряжения влияет значение магнитной силы и скорость вращения поля. Основная проблема генераторов постоянного тока – пригорание и залипание щеток при съеме с якоря токов большой величины – решена переходом на генераторы переменного тока. Ток возбуждения, подающийся на ротор для возбуждения магнитной индукции, на порядок ниже, снимать электроэнергию с неподвижного статора гораздо легче.

Однако вместо постоянно расположенных в пространстве клемм «–» и «+» производители авто получили постоянное изменение плюса и минуса. Подзарядка аккумулятора переменным током не возможна в принципе, поэтому диодным мостиком его предварительно выпрямляют.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Из этих нюансов плавно вытекают задачи, решаемые реле генератора:

  • подстройка тока в обмотке возбуждения
  • выдерживание диапазона 13,5 – 14,5 В в бортовой сети и на клеммах аккумулятора
  • отсечение питания обмотки возбуждения от АКБ при заглушенном двигателе

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Поэтому называют регулятор напряжения еще и реле зарядки, а на панель выведена сигнальная лампа процесса подзарядки АКБ. В конструкцию генераторов переменного тока функция отсечения обратного тока заложена по умолчанию.

Разновидности реле регуляторов

Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:

  • внешние – повышают ремонтопригодность генератора
  • встраиваемые – в пластину выпрямителя или щеточный узел
  • регулирующие по минусу – появляется дополнительный провод
  • регулирующие по плюсу – экономичная схема подключения
  • для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
  • для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
  • двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
  • трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
  • многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
  • транзисторные – в современных авто не используются
  • релейные – улучшенная обратная связь
  • релейно-транзисторные – универсальная схема
  • микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
  • интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Внимание: Без доработки схемы «плюсовой» и «минусовой» регулятор напряжения являются не взаимозаменяемыми приборами.

Реле генераторов постоянного тока

Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.

При диагностике проверка реле происходит на выполнение трех его функций:

  • отсечка аккумулятора во время стоянки машины
  • ограничение максимального тока на выходе генератора
  • регулировка напряжения для обмотки возбуждения

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

При любой неисправности требуется ремонт.

Реле генераторов переменного тока

В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.

Встроенные и внешние регуляторы

Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине.

Например, если выносное реле подключено к катушке зажигания, его работа будет направлена на регулировку напряжения лишь на этом участке бортовой сети. Поэтому, прежде чем узнать, как проверить реле выносного типа, следует убедиться, что оно подключено правильно.

Управление по «+» и «–»

В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:

  • при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
  • если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.

Двухуровневые

На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:

  • через реле проходит электрический ток
  • возникающее магнитное поле притягивает рычаг
  • сравнивающим устройством служит пружина с заданным усилием
  • при увеличении напряжения контакты размыкаются
  • на возбуждающую обмотку поступает меньший ток

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:

  • делитель напряжения собран из резисторов
  • стабилитрон является задающим устройством

Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.

Трехуровневые

Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:

  • напряжение выходит с генератора на специальную схему через делитель
  • информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
  • сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.

Принцип работы реле регулятора

Благодаря встроенным резисторам и специальным схемам реле получает возможность сравнивать величину вырабатываемого генератором напряжения. После чего, слишком высокое значение приводит к отключению реле, чтобы не перезарядить аккумулятор и не испортить электроприборы, подключенные в бортовую сеть.

Любые неисправности приводят именно к этим последствиям, приходит в неисправность батарея АКБ или резко увеличивается эксплуатационный бюджет.

Переключатель лето/зима

Вне зависимости от сезона и температуры воздуха работа генератора всегда стабильна. Как только его шкив начинает вращаться, электроток вырабатывается по умолчанию. Однако зимой внутренности аккумулятора замерзают, он восполняет заряд значительно хуже, чем летом.

Переключатели лето/зима находятся либо на корпусе регулятора напряжения, либо этим обозначением подписаны соответствующие разъемы, которые нужно найти и подсоединить к ним проводку в зависимости от сезона.

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Ничего необычного в этом переключателе нет, это лишь грубые настройки реле регулятора, позволяющие повысить до 15 В напряжение на клеммах аккумулятора.

Подключение в бортовую сеть генератора

Если при замене генератора вы подключаете новый прибор самостоятельно, необходимо учесть нюансы:

  • вначале следует проверить целостность и надежность контакта провода от кузова машины к корпусу генератора
  • затем можно подсоединять клемму Б реле регулятора с «+» генератора
  • вместо «скруток», начинающих греться через 1 – 2 года эксплуатации, лучше использовать пайку проводов
  • заводской провод нужно заменить кабелем сечения 6 мм2 минимум, если вместо штатного генератора монтируется электроприбор, рассчитанный на ток больше 60 А
  • амперметр в цепи генератор/аккумулятор показывает, мощность какого источника электроснабжения в данный момент выше в бортовой сети

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Амперметры – нужные приборы, с помощью которых можно определить заряд АКБ и работоспособность генератора. Без особых причин не рекомендуется убирать их из схемы.

Схемы подключения регулятора выносного

Монтируется выносное реле регулятора напряжения генератора только после выяснения, в разрыв какого провода оно должно быть подключено. Например:

  • на старых РАФ, Газелях и «Бычках» используются реле 13.3702 в полимерном или стальном корпусе с двумя контактами и двумя щетками, монтируются в «–» разрыв цепи, клеммы всегда промаркированы, «+» обычно берется с катушки зажигания (Б-ВК клемма), контакт Ш регулятора соединяется со свободной клеммой щеточного узла
  • в «жигулях» применяются реле регуляторы 121.3702 белого и черного цвета, существуют двойные модификации, в которых при выходе из строя одного прибора работа второго устройства продолжается простым переключением на него, монтируется в разрыв «+» клеммой 15 к выводу катушки зажигания Б-ВК, к щеточному узлу крепится проводом клемма 67

Встраиваемые реле-регуляторы автолюбители называют «шоколадками», маркированными Я112. Они монтируются в специальные щеткодержатели, прижимаются винтами и защищаются дополнительно крышкой.

На автомобилях ВАЗ реле обычно встроены в щеточный узел, полная маркировка Я212А11, подключаются к замку зажигания.
Если владелец меняет штатный генератор на старом отечественном ВАЗ на устройство переменного тока от иномарки или современной Лады, подключение производится по другой схеме:

  • вопрос крепления корпуса автолюбитель решает самостоятельно
  • аналогом клеммы «плюс» здесь служит контакт В или В+, его включают в бортовую сеть через амперметр
  • выносные реле регуляторы здесь обычно не используются, а встраиваемые уже интегрированы в щеточный узел, из них выходит единственный провод с маркировкой D либо D+, который подсоединяется к замку зажигания (к клемме катушки Б-ВК)

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Для дизельных ДВС в генераторах может присутствовать клемма W, которая присоединяется к тахометру, ее игнорируют при установке на авто с бензиновым мотором.

Проверка подключения

После установки трехуровневого или иного реле-регулятора необходима проверка работоспособности:

  • двигатель заводится
  • напряжение в бортовой сети контролируется на разных оборотах

После установки генератора переменного тока и подключения его по вышеприведенной схеме владельца может ожидать «сюрприз»:

  • при включении ДВС запускается генератор, измеряется напряжение на средних, больших и малых оборотах
  • после выключения зажигания ключом …. двигатель продолжает работать

В этом случае заглушить ДВС можно либо сняв провод возбуждения, либо отпустив сцепление с одновременным нажатием тормоза. Все дело в наличии остаточной намагниченности и постоянном самовозбуждении обмотки генератора. Проблема решается установкой в разрыв возбуждающего провода лампочки:

  • она горит при незапущенном генераторе
  • гаснет после его запуска
  • проходящий через лампу ток недостаточен, чтобы возбудить обмотку генератора

Эта лампа автоматически становится индикатором наличия зарядки АКБ.

Диагностика реле регулятора

Определить поломки регулятора напряжения можно по признакам косвенным. Прежде всего, это некорректная зарядка АКБ:

  • перезаряд – выкипает электролит, раствор кислоты попадает на детали кузова
  • недозаряд – ДВС не запускается, лампы горят в пол накала

Однако предпочтительнее диагностика приборами – вольтметром или тестером. Любое отклонение от максимального значения напряжения 14,5 В (в некоторых авто бортовая сеть рассчитана на 14,8 В) на больших оборотах или минимального значения 12,8 В на малых оборотах становится причиной замены/ремонта реле регулятора.

Встроенного

Чаще всего регулятор напряжения интегрирован в щетки генератора, поэтому необходимо уровневое обследование этого узла:

  • после снятия защитной крышки и ослабления винтов щеточный узел извлекается наружу
  • при износе щеток (осталось меньше 5 мм их длины) замена должна производится в обязательном порядке
  • диагностика генератора мультиметром производится в комплекте с аккумулятором или зарядным устройством
  • «минусовой» провод от источника тока замыкается на соответствующую пластину регулятора
  • «плюсовой» провод от ЗУ или АКБ подключается к аналогичному разъему реле
  • тестер устанавливается в режим вольтметра 0 – 20 В, щупы накладываются на щетки
  • в диапазоне 12,8 – 14,5 В между щетками должно быть напряжение
  • при увеличении напряжения больше 14,5 В стрелка вольтметра должна быть на нуле

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

В данном случае вместо вольтметра можно использовать лампу, которая должна гореть в указанном интервале напряжения, гаснуть при увеличении этой характеристики больше этого значения.

Провод, управляющий тахометром (маркировка W только на реле для дизелей) прозванивается мультиметром в режиме тестера. На нем должно быть сопротивление около 10 Ом. При снижении этого значения провод «пробит», его следует заменить новым.

Выносного

Никаких отличий в диагностике для выносного реле не существует, зато его не нужно демонтировать из корпуса генератора. Проверить реле регулятор напряжения генератора можно при работающем двигателе, изменяя обороты с низких на средние, затем высокие. Одновременно с увеличением оборотов нужно включить дальний свет (как минимум), кондиционер, монитор и прочие потребители (как максимум).

Реле регулятор напряжения генератора своими руками схема

Реле регулятор напряжения генератора своими руками схема

Таким образом, при необходимости владелец транспортного средства может заменить штатное реле регулятор напряжения на более современную модификацию встраиваемого или выносного типа. Диагностика работоспособности доступна собственными силами при наличии обычной автомобильной лампы.

РадиоКот :: Микроконтролерный реле регулятор.

РадиоКот >Схемы >Цифровые устройства >Защита и контроль >

Микроконтролерный реле регулятор.

Предлагаемое устройство предназначено для замены штатного реле-регулятора напряжения в бортсети автомобиля и отличается тем, что поддерживаемое им напряжение зависит от температуры аккумуляторной батареи. Оно не требует налаживания и с помощью сигнальной лампы на приборной панели сигнализирует о некоторых неисправностях системы электропитания автомобиля. Недостатком можно считать необходимость вмешательства в электропроводку автомобиля, так как схема подключения нового реле-регулятора отличается от стандартной. Устройство не предназначено для использования в автомобилях с генераторами, управляемыми по K-Line (Mercedes, BMW и некоторые автомобили концерна VAG).Схема реле-регулятора изображена на рис. 1. Его основа — микроконтроллер ATtiny85-20SU (DD1), который без изменения схемы прибора, его печатной платы и программы микроконтроллера можно заменить на ATtiny25-20SU или ATtiny45-20SU. С микроконтроллерами других типов приложенные к статье программы работать не будут.

Рис. 1. Схема реле-регулятора

 

 Линия PB0 (вывод 5) микроконтроллера настроена как выход. На ней программа формирует сигнал управления лампой, имеющейся на приборной панели автомобиля. Через эту же лампу на линию PB1 (вывод 6) микроконтроллера поступает сигнал о том, что зажигание включено. Этот вход защищён от выбросов напряжения стабилитроном VD2. Кроме указанного на схеме, здесь пригоден любой стабилитрон на 3,3…4,9 В в подходящем корпусе. Конденсатор C6 подавляет шум стабилитрона. Упомянутая выше сигнальная лампа 12 В, 1,2…1,4 Вт включена в коллекторную цепь транзистора VT1, усиливающего сигнал микроконтроллера.

Номинал резистора R11, указанный не схеме, можно уменьшить до 1 кОм, но нельзя увеличивать. Это связано с тем, что вместе с конденсатором C6 он образует интегрирующую цепь, задерживающую на некоторое время после закрывания транзистора VT1 достижение напряжением на входе PB1 микроконтроллера высокого логического уровня. Для безошибочного определения включённого и выключенного состояния замка зажигания автомобиля это время не должно быть больше имеющейся в программе задержки. Максимально допустимое сопротивление резистора R11 2,2 кОм определено экспериментально.

Линия PB2 (вывод 7) микроконтроллера через усилитель на транзисторах VT2-VT4 управляет обмоткой возбуждения генератора автомобиля. Обратите внимание, что транзисторы VT2 и VT3 питаются напряжением не 5 В, а 9 В от стабилизатора напряжения на стабилитроне VD3. Это необходимо, чтобы подать на затвор транзистора VT4 напряжение, достаточное для его полного открывания, при котором сопротивление открытого канала этого транзистора и рассеиваемая на нём мощность минимальны. Стабилитрон 1N5239B можно заменить любым другим с напряжением стабилизации 9…10 В.

К линии PB3 (выводу 2) микроконтроллера подключают датчик температуры аккумуляторной батареи автомобиля. Если в качестве этого датчика применён терморезистор RK1 (я использовал приобретённый на сайте https:// www.ebay.com герметизированный, с длинными выводами «NTC Thermistor temperature sensor 10K 1 % 3950»), то вместе с резистором R10 он образует измерительный делитель напряжения. Если датчик — LM335 (BK1), который подключают вместо терморезистора, то через тот же резистор на него поступает напряжение питания. Конденсатор С4 — сглаживающий.

Обратите внимание, зависимости выходного напряжения от температуры у терморезистора и интегрального датчика температуры неодинаковы, поэтому программы микроконтроллера при использовании этих датчиков должны быть разными. В первом случае — это ATTINY85_HTC_10K, во втором — ATTI-NY85_LM335. Конфигурация микроконтроллера в обоих случаях должна соответствовать табл. 1. Она совпадает с первоначально установленной заводом-изготовителем.

Таблица 1

Линия PB4 (вывод 3) микроконтроллера использована как аналоговый вход для контроля напряжения в бортсети. Резисторы R1, R6, R7, R9 образуют делитель этого напряжения для подачи на АЦП микроконтроллера. C1R8C3 — фильтр, сглаживающий пульсации измеряемого напряжения.

Резисторы R2-R5 образуют с конденсатором С2 фильтр питания, а с резистором R17 — балластное сопротивление для стабилизатора напряжения на стабилитроне VD3. Интегральный стабилизатор LM1117-5.0 (DA1) обеспечивает напряжением 5 В микроконтроллер.

Устройство собрано на печатной плате, изображённой на рис. 2. Она рассчитана на установку резисторов типоразмера 1206 для поверхностного монтажа и таких же конденсаторов (за исключением оксидных C2, C7 и C8). К транзисторам VT2 и VT3 особых требований не предъявляется. Те, типы которых указаны на схеме, можно заменить другими маломощными соответствующей структуры с напряжением коллектор-эмиттер не менее 30 В и в корпусе SOT95. Вместо BCX56 подойдёт любой n-p-n транзистор средней мощности в корпусе SOT-89 с допустимыми током коллектора не менее 1 А, напряжением коллектор-эмиттер 30 В и более. При соответствующей доработке платы можно применить подходящие транзисторы и в других корпусах. Например, VT1 — серии КТ815, VT2 — серии КТ315, VT3 — серии КТ361.

Полевой транзистор IRLR2905 имеет сопротивление открытого канала 0,027 Ом, максимальный ток стока — 30 А и корпус TO-252AA. На его месте сможет работать, например, транзистор IRLR2705 (0,04 Ом, 20 А), но он будет выделять заметно больше тепла и потребует более эффективного теплоотвода. Другая возможная замена — полевой транзистор RFP50N06 (0,022 Ом, 50 А). Он довольно популярен в автомобильных УМЗЧ, но имеет корпус TO-220AB.

В качестве замены микросхемы LM1117-5.0 подходят по параметрам многие интегральные стабилизаторы напряжения +5 В. Но все они несовместимы с ней по назначению выводов. Поэтому при замене потребуется вносить коррективы в печатную плату.

Диод 10A7 (VD1, устанавливаемый вне печатной платы) можно заменить любым другим диодом с допустимыми прямым током 10 А и обратным напряжением не менее 100 В.

Печатная плата изготовлена из фольгированного с двух сторон стеклотекстолита, но печатные проводники вытравлены только на одной её стороне. Фольга на противоположной стороне платы сохранена и соединена с общим проводом устройства. После травления в плате сверлят отверстия. Затем вырезают из алюминиевого, медного или латунного листа толщиной 1,5…2 мм пластину-теплоотвод размерами 72×42 мм — немного больше, чем сама плата. Используя плату в качестве шаблона, сверлят в пластине четыре крепёжных отверстия (на рис. 2 эти отверстия большего, чем другие, диаметра).

Предназначенные для не соединяемых с общим проводом выводов деталей отверстия в плате зенкуют со стороны сплошной фольги сверлом большого диаметра, чтобы удалить фольгу вокруг них. Два нижних (по рис. 2) крепёжных отверстия необходимо раззен-ковать со стороны печатных проводников. Выводы деталей, соединяемые с общим проводом, при монтаже следует пропаивать с обеих сторон платы.

Закончив монтаж всех деталей и проверив его, положите на плату со стороны печатных проводников пластину-теплоотвод. Она должна опереться на корпус транзистора VT4 и на две шайбы толщиной 2,3 мм, наложенные на верхние (по рис. 2) крепёжные отверстия. Место соприкосновения теплоотвода с корпусом транзистора желательно смазать теплопроводной пастой. Плату и теплоотвод скрепляют четырьмя винтами с гайками.

После проверки готового изделия в работе его разбирают, покрывают плату несколькими слоями влагозащитного лака (обязательно!), при этом защитив от лака соприкасающуюся с теплоотводом поверхность транзистора VT4 и контакты XT1-XT6, и вновь собирают. Зазор между платой и теплоотводом можно залить термоклеем.

В автомобилях, оборудованных электрогенератором, обмотки статора которого соединены по схеме «звезда» с трёхфазным выпрямительным мостом на шести диодах, новый реле-регулятор подключают по схеме, изображённой на рис. 3. Но предварительно нужно удалить штатные реле-регулятор и реле контроля зарядки аккумуляторной батареи. Места разрыва цепей обозначены на схеме крестами. Отключив от корпуса автомобиля правый (по схеме) вывод сигнальной лампы, соединяют его, как показано на схеме утолщённой линией, с выводом замка зажигания. Диод VD1 (см. рис. 1) в рассматриваемом случае не требуется.

 

Рис. 3. Схема подключения нового реле-регулятора

Если обмотки статора генератора соединены «треугольником», а выпрямитель состоит из девяти диодов, то новый реле-регулятор подключают к нему по схеме, изображённой на рис. 4. Здесь, кроме проводов, шедших к старому реле-регулятору, нужно разрезать ещё один, присоединённый к левому (по схеме) выводу сигнальной лампы.

Рис. 4. Схема подключения нового реле-регулятора

Через диод VD1 (см. рис. 1) обмотка возбуждения генератора питается при включённом зажигании, но остановленном или работающем на малых оборотах двигателе автомобиля. В отсутствие диода VD1 генератор при запуске двигателя работать не начнёт.

Непосредственно от замка зажигания (без диода) напряжение на обмотку возбуждения подавать нельзя, так как в этом случае запущенный двигатель продолжит работать и после выключения зажигания.

Датчик температуры крепят к аккумуляторной батарее липкой с двух сторон лентой, не забыв предварительно обезжирить место крепления. На противоположную датчику и батарее сторону ленты наклеивают небольшую поролоновую пластину. Она предохранит датчик от нагревания горячим воздухом подкапотного пространства.

Пока зажигание выключено, программа микроконтроллера «спит». «Проснувшись» при его включении, она подаёт сигнал «напряжение ниже заданного» — сигнальная лампа часто мигает. Как только после запуска двигателя напряжение генератора достигнет нижнего порогового значения, лампа погаснет, а программа перейдёт в режим стабилизации напряжения. При превышении его верхнего порогового значения программа установит низкий уровень на линии PB2 микроконтроллера, чем закроет транзистор VT4 и отключит обмотку возбуждения генератора. При снижении напряжения ниже нижнего порога программа установит на линии PB2 высокий уровень, открывая транзистор, замыкающий цепь питания обмотки возбуждения. Значения напряжения верхнего и нижнего порогов (включения и выключения обмотки возбуждения) зависят от температуры аккумуляторной батареи жёстко заданы в программе. Они указаны в табл. 2.

По поводу значения напряжения, которое нужно поддерживать, идёт много споров. Теоретически при температуре аккумуляторной батареи -30 оС напряжение должно быть равным 15,9 В. Но как показывает практика, это слишком много для бортовой электроники. А напряжение 12,5 В при прогретой до +50 оС батарее, конечно же, слишком мало. Особенно летом при работающих кондиционере, вентиляторах радиатора и других потребителях тока. Такое напряжение приводит к временному отказу системы ABS. По указанным причинам решено было остановиться на интервале изменения напряжения 12,8…15 В.

Если напряжение остаётся меньшим нижнего порога более 10 с, сигнальная лампа начинает мигать с частотой около 2 Гц. Предусмотрена также индикация неисправности (замыкания или обрыва) в цепи датчика температуры — мигание сигнальной лампы с частотой 0,5 Гц. В этом случае программа удерживает напряжение в пределах 13,8…14 В. Устройство выключается при полном отключении питания либо при снятии питания с сигнальной лампы (выключении зажигания).

Файлы программ(AtmelStudio) и печатной платы (Sprint-Layout 6). В архиве.

Вопросы задаем здесь: https://radiokot.ru/forum/viewtopic.php?f=2&t=127157

 

Файлы:
Архив RAR
Изображение
Изображение

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Ремонт реле регулятора генератора — Diodnik

Перед тем, как проводить разбор и ремонт реле регулятора генератора своими руками, необходимо удостовериться, что реле действительно вышло из строя. Для этого рекомендуем ознакомиться с материалами на тему, как проверить реле регулятор генератора. Если же после проверки неисправность подтверждается можно спокойно приступить к разборке и диагностике компонентов.

Ремонт реле регулятора генератора

Разобрать реле регулятор ВАЗ совсем несложно, для этого необходимо снять пластиковую крышку корпуса, которая крепиться защелками. Далее необходимо открутить два винта прижимающих транзистор и отпаять клеммы от выводов 67 и 15.

Важно! При снятии платы необходимо проследить за изолирующей подложкой транзистора и постараться ее не потерять. Без нее включать реле в работу нельзя.

Плата и расположение на ней радиоэлементов старых образцов реле регулятора немного отличается от новых, но сама схема не изменилась.

Проверку элементов необходимо начинать в зависимости от симптоматики неисправности.

  • Если реле хоть как-то работает, завышает или занижает напряжение, тогда скорей всего транзисторы целы. Их можно проверять в последнюю очередь. Первым проверяют номинал резисторов R1-R3 и стабилитрон с диодом D1;D4.

Внимание! Номинал резистора R3 может отличаться от указанного в схеме. На тестируемом реле сопротивление R3 составило 4,7 кОм. Его необходимо определить по цветовой или другой маркировке и проверить сопротивление вручную

  • Если реле вообще не включается, позваниваем предохранитель F1, диоды D2;D3 и все транзисторы в первую очередь. При проверке транзисторов их необходимо не забыть выпаять со схемы.

Для наглядности и удобства все компоненты со схемы обозначены на плате. Зачастую вся плата покрыта слоем защитного лака, это надо учесть и смыть его в местах подключения щупов.

В данном случае виновником стал стабилитрон D3 — 2С147А. Он был заменен на его полный аналог КС147А.

Для хорошей точности можно провести тест с мультиметром, после того, как полностью окончен ремонт реле регулятора генератора.

  • Напряжение 13,05В. Контрольная лампочка светит ярко. Все впорядке.

  • Напряжение 14,15В. Контрольная лампочка уже светит очень тускло. Реле начинает ограничивать ток.

  • Напряжение 14,4В. Контрольная лампочка полностью потухла. Реле полностью ограничило ток.

Как видно из данного теста реле после ремонта прекрасно справляется со своими задачами, а режим работы как раз входит в диапазон 14 – 14,4 В.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Отправить ответ

avatar
  Подписаться  
Уведомление о