Сколько в катализаторе платины: Сколько в катализаторах драгметаллов и можно ли на них заработать – сколько ее в катализаторе автомобиля, микросхемах, реле и других радиодеталях, в каких больше всего, таблицы и фото

Платина — Википедия

Платина
← Иридий | Золото →
Platinum crystals.jpg

Кристаллы платины

Название, символ, номер Платина / Platinum (Pt), 78
Атомная масса
(молярная масса)
195,084(9)[1] а. е. м. (г/моль)
Электронная конфигурация [Xe] 4f14 5d9 6s1
Радиус атома 139 пм
Ковалентный радиус 130 пм
Радиус иона (+4e) 65 (+2e) 80 пм
Электроотрицательность 2,28 (шкала Полинга)
Электродный потенциал Pt←Pt2+ 1,20 В
Степени окисления 4, 2, 0
Энергия ионизации
(первый электрон)
 868,1 (9,00) кДж/моль (эВ)
Плотность (при н. у.) 21,09-21,45[2][3] г/см³
Температура плавления 2041,4 K (1768,3 °C, 3214,9 °F)[2]
Температура кипения 4098 K (3825 °C, 6917 °F)[2]
Уд. теплота плавления 21,76 кДж/моль
Уд. теплота испарения ~470 кДж/моль
Молярная теплоёмкость 25,85[3] Дж/(K·моль)
Молярный объём 9,10 см³/моль
Структура решётки кубическая
гранецентрированная
Параметры решётки 3,920 Å
Температура Дебая 230,00 K
Теплопроводность (300 K) 71,6 Вт/(м·К)
Тепловое расширение (25 °C) 8,8
Модуль Юнга 168 ГПа
Модуль сдвига 61 ГПа
Модуль объёмной упр. 230 ГПа
Коэффициент Пуассона 0,38
Твёрдость Мооса 3,5
Твёрдость Виккерса 549 МПа
Твёрдость Бринелля 392 МПа
Номер CAS 7440-06-4
78

Платина

4f145d96s1

Пла́тина (Pt от лат. Platinum) — химический элемент 10-й группы (по устаревшей классификации — побочной подгруппы восьмой группы), 6-го периода периодической системы химических элементов, с атомным номером 78; блестящий благородный металл серебристо-белого цвета.

В Старом Свете платина не была известна до середины XVI века, однако цивилизации Анд (инки и чибча) добывали и использовали её с незапамятных времён. Первыми европейцами, познакомившимися с платиной в середине XVI века, были конкистадоры. Считается, что первым в литературе упомянул о платине Скалигер в опубликованной в 1557 году книге «Экзотерические упражнения в 15 книгах», где он, полемизируя с Кардано о понятии «металл», рассказал о некоем веществе из Гондураса, которое нельзя расплавить. Вероятно, этим веществом и была платина

[4][5].

В 1735 году испанский король издаёт указ, повелевающий платину впредь в Испанию не ввозить. При разработке россыпей в Колумбии повелевалось тщательно отделять её от золота и топить под надзором королевских чиновников в глубоких местах речки Рио-дель-Пинто (приток реки Сан-Хуан), которую стали именовать Платино-дель-Пинто. А ту платину, которая уже привезена в Испанию, повелевалось всенародно и торжественно утопить в море. Королевское распоряжение было отменено через 40 лет, когда мадридские власти приказали доставлять платину в Испанию, чтобы самим фальсифицировать золотые и серебряные монеты. В 1820 году в Европу было доставлено от 3 до 7 тонн платины. Здесь с нею познакомились алхимики, считавшие самым тяжёлым металлом золото. Необычайно плотная платина оказалась тяжелее золота, поэтому алхимики посчитали её непригодным металлом и наделили адскими чертами. Некоторое применение платина нашла позже во Франции, когда из неё был изготовлен эталон метра, а позже эталон килограмма

[6].

Согласно некоторым источникам, испанский математик и мореплаватель А. де Ульоа в 1744 году привёз образцы платины в Лондон[7]:210, он поместил описание платины в своём отчёте о путешествии в Южную Америку, опубликованном в 1748 году

[8]. В 1789 А. Лавуазье включил платину в список простых веществ[7]:210[9]. Впервые в чистом виде из руд платина была получена английским химиком У. Волластоном в 1803 году.

В России ещё в 1819 году в россыпном золоте, добытом на Урале, был обнаружен «новый сибирский металл», который сначала называли белым золотом. Платина встречалась на Верх-Исетских, а затем и на Невьянских и Билимбаевских приисках. Богатые россыпи платины были открыты во второй половине 1824 года, а на следующий год в России началась её добыча[10]. В 1826 году П. Г. Соболевский и В. В. Любарский изобрели метод выработки ковкой платины с помощью прессования и последующей выдержки в раскалённом добела состоянии[7]:210[11].

Название платине было дано испанскими конкистадорами, которые в середине XVI в. впервые познакомились в Южной Америке (на территории современной Колумбии) с новым металлом, внешне похожим на серебро (исп. 

plata). Слово буквально означает «маленькое серебро», «серебришко». Объясняется такое пренебрежительное название исключительной тугоплавкостью платины, которая не поддавалась переплавке, долгое время не находила применения и ценилась вдвое ниже, чем серебро.

Месторождения[править | править код]

Platinum crystals.jpg

Платина является одним из самых редких металлов: её среднее содержание в земной коре (кларк) составляет 5⋅10−7 % по массе[3]. Даже так называемая самородная платина является сплавом, содержащим от 75 до 92 процентов платины, до 20 процентов железа, а также иридий, палладий, родий, осмий, реже медь и никель[7]:207.

Основная часть месторождений платины (более 90 %) заключена в недрах пяти стран. К этим странам относятся ЮАР (Бушвелдский комплекс), США, Россия, Зимбабве, Китай.

В России основными месторождениями металлов платиновой группы являются: Октябрьское, Талнахское и Норильск-1 сульфидно-медно-никелевые в Красноярском крае в районе Норильска (более 99 % разведанных и более 94 % оценённых российских запасов), Фёдорова Тундра (участок Большой Ихтегипахк) сульфидно-медно-никелевое в Мурманской области, а также россыпные Кондёр в Хабаровском крае, Левтыринываям в Камчатском крае, реки Лобва и Выйско-Исовское в Свердловской области[12]. Крупнейшим платиновым самородком, найденным в России, является «Уральский гигант» массой 7860,5 г, обнаруженный в 1904 г. на Исовском прииске; в настоящее время хранится в Алмазном фонде.

Самородную платину добывают на приисках (см. подробнее в статье Благородные металлы), менее богаты рассыпные месторождения платины, которые разведываются, в основном, способом шлихового опробования.

Производство платины в виде порошка началось в 1805 году английским учёным У. Х. Волластоном из южноамериканской руды.

Сегодня платину получают из концентрата платиновых металлов. Концентрат растворяют в царской водке, после чего добавляют этанол и сахарный сироп для удаления избытка HNO3. При этом иридий и палладий восстанавливаются до Ir3+ и Pd2+. Последующим добавлением хлорида аммония выделяют гексахлороплатинат(IV) аммония (NH4)2PtCl6. Высушенный осадок прокаливают при 800—1000 °C:

3(Nh5)2[PtCl6]→T 2N2↑+2Nh4↑+18HCl+3Pt{\displaystyle {\mathsf {3(NH_{4})_{2}[PtCl_{6}]{\xrightarrow {T}}\ 2N_{2}\uparrow +2NH_{3}\uparrow +18HCl+3Pt}}}

Получаемую таким образом губчатую платину подвергают дальнейшей очистке повторным растворением в царской водке, осаждением (NH

4)2PtCl6 и прокаливанием остатка. Затем очищенную губчатую платину переплавляют в слитки. При восстановлении растворов солей платины химическим или электрохимическим способом получают мелкодисперсную платину — платиновую чернь.

Серовато-белый пластичный металл, температуры плавления и кипения — 2041,4 K (1768,3 °C) и 4098 K (3825 °C)[2] соответственно, удельное электрическое сопротивление — 0,098 мкОм·м (при 0 °C). Платина — один из самых тяжёлых (плотность 21,09—21,45 г/см³[2][3]; атомная плотность 6,62⋅1022 ат/см³) металлов. Твёрдость по Бринеллю — 50 кгс/мм2 (по Моосу 3,5[13]).

Кристаллическая решётка кубическая гранецентрированная, а = 0,392 нм, Z = 4, пространственная группа

Fm3m[3].

Платина устойчива к вакууму и может применяться в космической технике[14].

Изотопы[править | править код]

Известны изотопы платины с массовыми числами от 166 до 204 (количество протонов 78, нейтронов от 88 до 126), и 18 ядерных изомеров.

Природная платина встречается в виде смеси из шести изотопов: 190Pt (0,014 %), 192Pt (0,782 %), 194Pt (32,967 %), 195Pt (33,832 %), 196Pt (25,242 %), 198Pt (7,163 %). Один из них слабо радиоактивен (190Pt, альфа-распад в 186Os, период полураспада 6,5⋅1011 лет). Предсказывается существование очень слабой радиоактивности ещё двух природных изотопов платины: альфа-распад 192Pt→188Os и двойной бета-распад 198Pt→198Hg, однако пока экспериментально эти распады не зарегистрированы; установлено лишь, что периоды полураспада превышают соответственно 4,7×10

16 лет и 3,2×1014 лет.

По химическим свойствам платина похожа на палладий, но проявляет бо́льшую химическую устойчивость. При комнатной температуре реагирует с царской водкой:

3Pt+4HNO3+18HCl→3h3[PtCl6]+4NO↑+8h3O{\displaystyle {\mathsf {3Pt+4HNO_{3}+18HCl\rightarrow 3H_{2}[PtCl_{6}]+4NO\uparrow +8H_{2}O}}}

Платина медленно растворяется в горячей концентрированной серной кислоте и жидком броме. Она не взаимодействует с другими минеральными и органическими кислотами. При нагревании реагирует со щелочами и пероксидом натрия, галогенами (особенно в присутствии галогенидов щелочных металлов):

Pt+2Cl2+2NaCl→Na2[PtCl6]{\displaystyle {\mathsf {Pt+2Cl_{2}+2NaCl\rightarrow Na_{2}[PtCl_{6}]}}}

При нагревании платина реагирует с серой, селеном, теллуром, углеродом и кремнием. Как и палладий, платина может растворять молекулярный водород, но объём поглощаемого водорода и способность его отдавать при нагревании у платины меньше.

При нагревании платина реагирует с кислородом с образованием летучих оксидов. Выделены следующие оксиды платины: чёрный PtO, коричневый PtO2, красновато-коричневый PtO3, а также Pt2O3 и смешанный Pt3O4, в котором платина проявляет степени окисления II и IV.

Для платины известны гидроксиды Pt(OH)2 и Pt(OH)4. Получают их при щелочном гидролизе соответствующих хлороплатинатов, например:

Na2[PtCl4]+2NaOH→4NaCl+Pt(OH)2↓{\displaystyle {\mathsf {Na_{2}[PtCl_{4}]+2NaOH\rightarrow 4NaCl+Pt(OH)_{2}\downarrow }}}
Na2[PtCl6]+4NaOH→6NaCl+Pt(OH)4↓{\displaystyle {\mathsf {Na_{2}[PtCl_{6}]+4NaOH\rightarrow 6NaCl+Pt(OH)_{4}\downarrow }}}

Эти гидроксиды проявляют амфотерные свойства:

Pt(OH)2+2NaOH→Na2[Pt(OH)4]{\displaystyle {\mathsf {Pt(OH)_{2}+2NaOH\rightarrow Na_{2}[Pt(OH)_{4}]}}}
Pt(OH)2+4HBr→h3[PtBr4]+2h3O{\displaystyle {\mathsf {Pt(OH)_{2}+4HBr\rightarrow H_{2}[PtBr_{4}]+2H_{2}O}}}
Pt(OH)4+2NaOH→Na2[Pt(OH)6]{\displaystyle {\mathsf {Pt(OH)_{4}+2NaOH\rightarrow Na_{2}[Pt(OH)_{6}]}}}
Pt(OH)4+6HBr→h3[PtBr6]+4h3O{\displaystyle {\mathsf {Pt(OH)_{4}+6HBr\rightarrow H_{2}[PtBr_{6}]+4H_{2}O}}}

Гексафторид платины PtF6 является одним из сильнейших окислителей среди всех известных химических соединений, способный окислить молекулы кислорода и ксенона:

O2+PtF6→O2+[PtF6]−{\displaystyle {\mathsf {O_{2}+PtF_{6}\rightarrow O_{2}^{+}[PtF_{6}]^{-}}}}

Соединение O2+[PtF6] (гексафтороплатинат(V) диоксигенила) летуче и разлагается водой на фтороплатинат(IV), небольшое количество гидратированного диоксида платины и кислород с примесью озона[15].

С помощью гексафторида платины, в частности, канадский химик Нейл Бартлетт в 1962 году получил первое настоящее химическое соединение ксенона Xe[PtF6].

C обнаруженного Н. Бартлеттом взаимодействия между Хе и PtF6, приводящего к образованию Xe[PtF6], началась химия инертных газов. PtF6 получают фторированием платины при 1000 °C под давлением.

Фторирование платины при нормальным давлении и температуре 350—400 °C даёт фторид платины(IV):

Pt+2F2→PtF4{\displaystyle {\mathsf {Pt+2F_{2}\rightarrow PtF_{4}}}}

Фториды платины гигроскопичны и разлагаются водой.

Тетрахлорид платины с водой образует гидраты PtCl4·nH2O, где n = 1, 4, 5 и 7. Растворением PtCl4 в соляной кислоте получают платинохлористоводородные кислоты H[PtCl5] и H2[PtCl6].

Синтезированы такие галогениды платины, как PtBr4, PtCl2, PtCl2·2PtCl3, PtBr2 и PtI2.

Для платины характерно образование комплексных соединений состава [PtX4]2- и [PtX6]2-. Изучая комплексы платины, А. Вернер сформулировал теорию комплексных соединений и объяснил природу возникновения изомеров в комплексных соединениях.

Реакционная способность[править | править код]

Монета 3 рубля, 1834

Платина является одним из самых инертных металлов. Она нерастворима в кислотах и щелочах, за исключением царской водки. Платина также непосредственно реагирует с бромом, растворяясь в нём.

При нагревании платина становится более реакционноспособной. Она реагирует с пероксидами, а при контакте с кислородом воздуха — со щелочами. Тонкая платиновая проволока горит во фторе с выделением большого количества тепла. Реакции с другими неметаллами (хлором, серой, фосфором) происходят менее активно. При более сильном нагревании платина реагирует с углеродом и кремнием, образуя твёрдые растворы, аналогично металлам группы железа.

В своих соединениях платина проявляет почти все степени окисления от 0 до +6, из которых наиболее устойчивы +2 и +4. Для платины характерно образование многочисленных комплексных соединений, которых известно много сотен. Многие из них носят имена изучавших их химиков (соли Косса, Магнуса, Пейроне, Цейзе, Чугаева и т. д.). Большой вклад в изучение таких соединений внес русский химик Л. А. Чугаев (1873−1922), первый директор созданного в 1918 году Института по изучению платины.

Катализатор[править | править код]

Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Ещё в 1821 немецкий химик И. В. Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта (этанола) до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идёт сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» — прибор, широко применявшийся для получения огня до изобретения спичек.

{\mathsf  {Pt+2F_{2}\rightarrow PtF_{4}}} 1000 кубических сантиметров 99,9%-ной платины общей стоимостью 970 600 долларов США (в ценах на 14 июля 2012 года)[16] Рост добычи шлихового золота и платины в России в XIX веке {\mathsf  {Pt+2F_{2}\rightarrow PtF_{4}}} Мировое производство платины (в тоннах/год) за последние десятилетия[17]

До 1748 г. платина добывалась и производилась только на территории Америки, а в Старом Свете не была известна.

Когда платину стали завозить в Европу, её цена была вдвое ниже серебра. Ювелиры очень быстро обнаружили, что платина хорошо сплавляется с золотом, а так как плотность платины выше, чем у золота, то незначительные добавки платины позволили изготавливать подделки, которые невозможно было отличить от золотых изделий. Такого рода подделки получили столь широкое распространение, что испанский король приказал прекратить ввоз платины, а оставшиеся запасы утопить в море. Этот закон просуществовал до 1778 года. После отмены закона потребность в платине была небольшой, её использовали в основном для создания химического оборудования, приспособлений и в качестве катализаторов. Добываемой в Америке платины для этих целей было достаточно. Ни о каком значимом промышленном производстве говорить не приходилось.

В 1819 году платину впервые обнаружили на Урале близ

Платиновый катализатор — Знаешь как

Платиновый катализаторЛучший катализатор реакции окисления аммиака до окиси азота NО в одном из главных процессов производства азотной кислоты. Катализатор здесь предстает в виде сетки из платиновой проволоки диаметром 0,05—0,09 мм. В материал сеток введена добавка родия (5—10%). Используют и тройной сплав — 93% Pt, 3% Rh и 4% Pd. Добавка родия к платине повышает механическую прочность и увеличивает срок службы сетки, а палладий немного удешевляет катализатор и немного (на 1—2%) повышает его активность. Срок службы платиновых сеток — год-полтора. После этого старые сетки отправляют на аффинажный завод на регенерацию и устанавливают новые. Производство азотной кислоты потребляет значительные количества платины.

Платиновый катализатор ускоряет многие другие практически важные реакции: гидрирование жиров, циклических и ароматических углеводородов, олефинов, альдегидов, ацетилена, кетонов, окисление SО2в SО3в сернокислотном производстве. Их используют также при синтезе витаминов и некоторых фармацевтических препаратов. Известно, что в 1974 г. на нужды химической промышленности в США было израсходовано около 7,5 т платины.

Не менее важны платиновые катализаторы в нефтеперерабатывающей промышленности. С их помощью на установках каталитического риформинга получают высокооктановый бензин, ароматические углеводороды и технический водород из бензиновых и лигроиновых фракций нефти. Здесь платину обычно используют в виде мелкодисперсного порошка, нанесенного на окись алюминия, керамику, глину, уголь. В этой отрасли работают и другие катализаторы (алюминий, молибден), но у платиновых — неоспоримые преимущества: большая активность и долговечность, высокая эффективность. Нефтеперерабатывающая промышленность США закупила в 1974 г. около 4 т платины.

Еще одним крупным потребителем катализатора стала автомобильная промышленность, которая, как это ни странно, тоже использует именно каталитические свойства этого металла — для дожигания и обезвреживания выхлопных газов.

Четвертым и пятым по масштабам потребления покупателями платины в США были электротехника и стекольное производство.

Стабильность электрических, термоэлектрических и механических свойств платины плюс высочайшая коррозионная и термическая стойкость сделали этот металл незаменимым для современной электротехники, автоматики и телемеханики, радиотехники, точного приборостроения. Из платины делают электроды топливных элементов. Такие элементы применены, например, на космических кораблях серии «Аполлон».

Из сплава платины с 5—10% родия делают фильеры для производства стеклянного волокна. В платиновых тиглях плавят оптическое стекло, когда особенно важно ничуть не нарушить рецептуру.

В химическом машиностроении платина и ее сплавы служат превосходным коррозионностойким материалом. Аппаратура для получения многих особо чистых веществ и различных фторсодержащих соединений изнутри покрыта платиной, а иногда и целиком сделана из нее.

Очень незначительная часть платины идет в медицинскую промышленность.Из платины и ее сплавов изготавливают хирургические инструменты, которые, не окисляясь, стерилизуются в пламени спиртовой горелки; это преимущество особенно ценно при работе в полевых условиях. Сплавы платины с палладием, серебром, медью, цинком, никелем служат также отличным материалом для зубных протезов.

Спрос науки и техники на платину непрерывно растет и далеко не всегда бывает удовлетворенным. Дальнейшее изучение свойств платины еще больше расширит области применения и возможности этого ценнейшего металла.

«СЕРЕБРИШКО»? Современное название элемента № 78 происходит от испанского слова plata — серебро. Название «платина» можно перевести как «серебришко» или «сребрецо».

ЭТАЛОН КИЛОГРАММА, Из сплава платины с иридием в нашей стране наготовлен эталон килограмма, представляющий собой прямой цилиндр диаметром 39мм и высотой тоже 39 мм. Он хранится в Санкт-Петербурге (Ленинграде), во Всесоюзном научно-исследовательском институте метрологии им. Д. И. Менделеева. Раньше был эталоном и платино-иридиевый метр.

МИНЕРАЛЫ ПЛАТИНЫ. Сырая платина —это смесь различных минералов платины. Минерал поликсен содержит 80—88% Pt и

9-10% Fe; купроплатина — 65-73% Pt, 12-17% Fe и 7,7—14% Сu; в никелистую платину вместе с элементом № 78 входят железо, медь и никель. Известны также природные сплавы платины только с палладием или только с иридием — прочих платиноидов следы. Есть еще и немногочисленные минералы — соединения платины с серой, мышьяком, сурьмой. К ним относятся сперрилит PtAs2 куперит PtS, брэггит (Pt, Pd, Ni)S.

САМЫЕ КРУПНЫЕ. Самые крупные самородки платины, демонстрируемые на выставке Алмазного фонда Россия, весят 5918,4 и 7860,5 г.

ПЛАТИНОВАЯ ЧЕРНЬ. Платиновая чернь — мелкодисперсный порошок (размеры крупинок 25—40 мкм) металлической платины, обладающий высокой каталитической активностью. Ее получают, действуя формальдегидом или другими восстановителями на раствор комплексной гексахлорплатиновой кислотыН2[РtСl6].

ИЗ «СЛОВАРЯ ХИМИЧЕСКОГО», ИЗДАННОГО В 1812 ГОДУ. «Профессор Снядецкий в Вильне открыл в платине новое металлическое существо, которое названо им Вестий»…

«Фуркруа читал в Институте сочинение, в коем извещает, что платина содержит железо, титан, хром, медь и металлическое существо, доселе еще неизвестное»…

«Золото хорошо соединяется с платиною, но когда количество сей последней превышает 1 к 47 , то белеет золото, не умножая чувствительно тяжести своей и тягучести. Испанское правительство, опасавшееся сего состава, запретило выпуск платины, потому что не знало средств доказать подлога»-.

ОСОБЕННОСТИ ПЛАТИНОВОЙ ПОСУДЫ. Казалось бы, посуда из платины в лаборатории пригодна на все случаи жизни, но это не так. Как пи благороден этот тяжелый драгоценный металл, обращаясь с ним, следует помнить, что при высокой температуре платина становится чувствительной к многим веществам и воздействиям. Нельзя, например, нагревать платиновые тигли в восстановительном и тем более коптящем пламени: раскаленная платина растворяет углерод и от этого становится ломкой. Вплатиновой посуде не плавят металлы: возможно образование относительно легкоплавких сплавов и потери драгоценной платины. Нельзя также плавить в платиновой посуде перекиси металлов, едкие щелочи, сульфиды, сульфиты и тиосульфаты: сера для раскаленной платины представляет определенную опасность, так же, как фосфор, кремний, мышьяк, сурьма, элементарный бор. А вот соединения бора, наоборот, полезны для платиновой посуды. Если надо как следует вычистить ее, то в ней плавят смесь равных количеств KBF4и Н3ВО3. Обычно же для очистки платиновую посуду кипятят с концентрированной соляной или азотной кислотой.

Вы читаете, статья на тему платиновый катализатор

Дорогой палладий вызовет его замену на платину в автокатализаторах :: Новости :: РБК Quote

Дорогой палладий вызовет его замену на платину в автокатализаторах

«В начале сентября 2017 года цены на платину и палладий достигли паритета, однако такое положение закрепилось только к концу месяца, и с тех пор палладий устойчиво торгуется с премией к платине. В настоящий момент соотношение платина/палладий составляет 0,96. Палладий торгуется на максимальных уровнях с 2001 года, когда в последний раз был отмечен паритет, и его премия к платине растет. На этом фоне возникает важный вопрос – когда начнется процесс замены одного металла на другой в автомобильных катализаторах. Исторически спрос на платину и палладий а автокатализаторах изменялся в соответствии с изменениями соотношения платина/палладий, поскольку автопроизводители стремились оптимизировать затраты.
 

Если палладий в долгосрочном периоде продолжит устойчиво торговаться выше платины, производители катализаторов будут стремиться заменить палладий платиной. И тенденция к замене платины на палладий в дизельных двигателях, наблюдавшаяся в последние годы, может остановиться или даже обратиться вспять. Палладий по меньшей мере частично может быть заменен на платину в бензиновых двигателях. Впрочем, вряд ли это произойдет в скором времени, учитывая необходимые на замену затраты – понадобится время на дизайн, калибровку и сертификацию новых систем контроля за выхлопами. С другой стороны, уровень цен имеет значение, и мы ожидаем перехода обратно на платину, если цены на палладий будут устойчиво превышать цены на платину. Впрочем, процесс снижения использования палладия займет время. В последний раз, когда платина и палладий достигли паритета (в начале прошлого десятилетия), автопроизводители успешно сократили средний уровень содержания палладия, а некоторые стали в большем объеме использовать автокатализаторы, сделанные с использованием платины», — отметил аналитик Societe Generale Робин Бхар.

Условия приема автомобильных катализаторов

НЦ “Академия Благородных Металлов” представляет новую выгодную услугу. Это профессиональная оценка и вывоз катализаторов из вашего гаража, автосервиса или склада силами компании. А значит, абсолютно бесплатно!

Оценка производится в вашем присутствии, деньги на карту перечисляются в тот же день. Зачем ехать куда-то и тратить свое драгоценное время, когда можно просто вызвать опытных специалистов, которые быстро примут ваш товар и самостоятельно вывезут его с вашей территории.
Позвоните по телефону 8 (499) 404-27-09 и закажите выезд!

Скупка автомобильных катализаторов

На период февраля 2016 года ГИБДД подсчитало количество автомобилей всех типов на дорогах Российской Федерации. Ни много ни мало, цифра оказалась вполне внушительной – около 56, 6 млн. По отношению к февралю 2006 года их количество возросло на 64 %. Не дурно, согласитесь. Наверняка, сегодня можно встретить мало людей, которые бы оспаривали тот факт, что автомобиль – это, прежде всего, удобство и комфорт. Многие нарочито считают, что ценность автомобиля чаще всего зависит от такого немаловажного фактора как бренд. Но почему-то не многие отдают себе отчет в том, что автомобиль – это не только четыре колеса, логотип на руле и красивый кузов со спойлером на багажнике.

Каждая отдельная часть автомобиля представляет собой какую-то ценность, без которой этот сложный механизм не сможет полноценно выполнять свои первостепенные функции. И вот как раз об одном из таких, необходимых каждому «железному коню», элементов мы с Вами поговорим. Речь в этой статье пойдет об автомобильном катализаторе. Не вдаваясь в технические подробности, разберемся, в чем же заключается его ценность для продажи и последующей переработки.

Для начала, если Вы являетесь обладателем уже довольно изношенного и старого автомобильного катализатора, ни в коем случае не думайте от него избавляться путем выброса на помойку. Важно знать, что отработанные автомобильные катализаторы являются крупными источниками драгоценных металлов, среди которых платина, родий и палладий. Научный центр «Академия благородных металлов» готова дорого скупить катализаторы как у юридических, так и у физических лиц.

Чаще всего, в автомобилях используются металлические и керамические катализаторы. Керамические оцениваются катализаторы дороже, так как состоят из хрупкого материала и и содержат много платины и палладия. Как правило, именно керамические катализаторы чаще выходят из строя и заменяются на новые. Причинами поломок могут быть как как обычные маленькие камни, так и вода, попавшая в выхлопную систему. Как правило, использованные катализаторы многие автовладельцы попросту выкидывают, что в свою очередь загрязняет окружающую среду и наносит вред здоровью людей. Однако, таких пагубных последствий можно избежать, продав использованные детали «Академии благородны металлов» на выгодных для Вас условиях. Сразу же после извлечения из образцов всех драгоценных металлов, катализатор утилизируется.

Что касается непосредственно стоимости автомобильных катализаторов, то центр «Академии..» готов скупить как новые (работоспособные), так и бывшие в употреблении и сломанные катализаторы. Цена будет зависеть от веса каждого образца, типа, марки и состояния в целом. Ознакомиться с нашими расценками Вы можете в специальном разделе на сайте.

Не упустите свой шанс заработать на том, что для Вас уже не представляет никакой ценности. Ждем Ваших предложений.


Отправить ответ

avatar
  Подписаться  
Уведомление о